آیین نامه چاپ پایان‌نامه (رساله) های دانشجویان دانشگاه تربیت مدرس

نظر به اینکه چاپ و انتشار پایان‌نامه (رساله) های تحصیلی دانشجویان دانشگاه تربیت مدرس، میمیزی و غیره از فعالیت‌های علمی -پژوهشی دانشگاه است بنابراین به منظور افزایش و رعایت حقوق دانشگاه و دانشجویان این دانشگاه نسبت به رعایت موارد ذیل متعهد می‌شوند:

ماده 1: در صورت اقدام به چاپ پایان‌نامه (رساله) خود، مراقب را قیلی به طور کلی به «دفتر نشر اثار علمی» دانشگاه اطلاع دهد.

ماده 2: در صفحه سوم کتاب (پس از برگ شناسنامه) عبارت ذیل را چاپ کنند:

کتاب حاضر، حاصل پایان‌نامه کارشناسی ارشد نگارنده در رشته مهندسی پزشکی است که در سال ۱۳۸۸ در دانشگاه مهندسی برگ و کامپیوتر دانشگاه تربیت مدرس به راهنمایی جناب آقای دکتر علی محتوضی فر از آن دفاع شده است.

ماده 3: به منظور جبران بخشی از هزینه‌های انتشارات دانشگاه، تعداد یک درصد شماره‌گذار کتاب (در هر نوبت چاپ) را به «دفتر نشر اثار علمی» دانشگاه ادا کنند. دانشگاه می‌تواند نیاز خود را به نفع مرکز نشر در مورد فروش قرار دهد.

ماده 4: در صورت عدم رعایت ماده ۳، ۵۰/۰ بهای شماره‌گذار چاپ شده را به عنوان خسارت به دانشگاه تربیت مدرس، تأدیه کند.

ماده ۵: دانشجویان تعیید و ثبت‌کننده کتاب در صورت خودداری از پرداخت بهای خسارت، دانشگاه می‌تواند طرح‌های مربوط را از طریق مراجع قضایی مطالعه و تصویب کند؛ به علاوه به دانشگاه حق می‌دهد به منظور افزایش حقوق خود، از طریق دادگاه، معادل و جه مذکور در ماده ۴ را از محل توافق کتاب‌نامه محروم شده‌گازنده برای فروش، تامین نماید.

ماده ۶: اینجاستب محمد صالح میری دانشجوی رشته مهندسی پزشکی مقطع کارشناسی ارشد

تعهد فوق وضایعت اجرایي آن را قبول کرده، به آن ملتم می‌شوم.

نام و نام خانوادگی:
محمد صالح میری

تاریخ و امضاء:
آپین نامه حق مالکیت مادی و معنی در مورد نتایج پژوهش‌های علمی
دانشگاه تربیت مدرس

مقدمه: با علاقه به سیاست‌های پژوهشی و فناوری دانشگاه در راستای تحقق عدالت و کرامت انسانی که لازم به شکوفافی علمی و فنی است و رعایت حقوق مادی و معنی دانشگاه و پژوهشگران لازم است، اعضای هیئت علمی، دانشجویان، دانش‌آموختگان و دیگر همکاران طرح در مورد نتایج پژوهش‌های علمی که تحت عنوان پایان نامه، رساله و طرح‌های تحقیقاتی با هماهنگی دانشگاه انجام شده است، موارد زیر را رعایت نمایند.

ماده ۱- حقوق معنوی پژوهشگان‌انبار محفوظ خواهد بود.

ماده ۲- انتشار مقاله یا مقالات مستخرج از پایان‌نامه، رساله به صورت چاپ در نشریات علمی و یا ارائه در مجمع‌های علمی با یا بدون اجازه اولیه تأثیر یکی از اصلی‌ترین اصول استادیاست. این مخالفت را هنگامی می‌شود و یا دانشجوی مستقیم مکاتبات مقاله باشد. لیکه مسئولیت علمی مقاله مستخرج از پایان‌نامه و رساله به عهده استادی است و دانشجوی می‌باشد.

ماده ۳- انتشار کتاب و یا نرم‌افزار و یا اثر ویژه حاصل از نتایج پایان‌نامه، رساله و تمامی طرح‌های تحقیقاتی که به‌روزکردن اینجا اعضا از دانشگاه و مراکز تحقیقاتی، پژوهشکده‌ها، بارک علم و فناوری و دیگر‌ها با یک با موضوع جزئی صادر از معاونت پژوهشی دانشگاه براساس آن‌نامه‌های مصوب انجام شود.

ماده ۴- ثبت اختراع و تدوین دانش‌نامه و یا ارائه یافته‌ها در جشنواره‌های ملی، منطقه‌ای و بین‌المللی که حاصل نتایج مستخرج از پایان‌نامه، رساله و تمامی طرح‌های تحقیقاتی دانشگاه باید با هماهنگی استادیاست راهنمای یا مجزی طرح از طریق معاونت پژوهشی دانشگاه انجام گیرد.

ماده ۵- این آپین نامه در مورد فناوری و یک تبعه در تاریخ ۸۷/۱۱/۲۳ در شورای پژوهشی و در تاریخ ۸۷/۱۱/۱۵ در هیئت رئیسه دانشگاه به تایید رسید و در جلسه مورخ ۸۷/۱۱/۱۵ شورای دانشگاه به تصویب رسیده و از تاریخ تصویب در شورای دانشگاه لازم‌الاجرا است.
پایان نامه دوره کارشناسی ارشد مهندسی برقی

آشکارسازی رگه‌های خوشه‌ای در تصاویر شبکه توسط تبدیل گروه و عملکرد های مورفولوژی با

المان‌های چند-ساختاری

نگارنده:
محمدرضا صالح میری

استاد راهنما:
دکتر علی محلوچی فر

اسفند 1388
تقدیم به:

پدر و مادرم که دعاویشان همیشه بدرقه راهم بود

و

برادرم که وجودش بارقه امیدم بود
تشکر و قدردانی

شکر و سیاست خداوندی را که به من فکر داد تا بپندهش، سلامتی داد تا زندگی کنم، هدایت نمود تا در
مسیر درست گام بردارم و ایمان داد تا در مشکلات راه به او تکیه کنم.

این پایان نامه با راهنمایی جناب آقای دکتر علی محلوی فر به انجام رسیده است که جا دارد از زحمات
دلسوزانه و راهنمایهای صبورانه ایشان کمال سیاسی‌گذاری را داشته باشم.

همچنین از پدر و مادر مهربان و غزیمز که همیشه و در تمامی مراحل زندگی‌ام حامی‌مین بودند و برای
موفقیت من از هیچ کوششی فروگذاری نکردند و زمینه تحسیل و فراگیری داشت را برای من فراهم
نمودند بی‌نهایت سپاسگذارم. جا دارد از زحمات برادر بزرگ‌وارم که همواره مشوق و پشتونه محکمی در
رویارویی با مشکلات زندگی برای من بوده است قدردانی نمایم.

از تمامی دوستان‌م‌که مرا در انجام این پایان نامه پایی نمودند نیز کمال تشکر را دارم.

با سپاس بی‌پرکان
محمد صالح میری
اسفندماه ۱۳۸۸
چکیده

تصاویر شبکه در کاربردهای مختلفی قابل استفاده هستند و این عمل، جراحی قفسه چشمی و حتی در بارش با افراد همچنین، این تصاویر نقش مؤثری در تشخیص مراحل اولیه برخی بیماری‌ها نظیر دیابت بازی می‌کند. این عمل با مقابله حالت و شرایط گره‌های خویش در طول زمان انجام می‌شود. مشخصات ذاتی تصاویر شبکه به نوعی است که عمل تشخیص گره‌های خویش را با دشواری همراه می‌سازد. در این پایان نامه شیوه جدیدی برای تشخیص مؤثر گره‌های خویش بصورت خودکار ارائه شده است. روش پیشنهادی بدين صورت است که بر اساس قابلیت های تبدیل کرولت در نمایش لبه‌ها، اعمال این تبدیل و اصلاح ضرایب آن با هدف بهبود لبه‌های تصاویر، سپس مشخصه‌های تصاویر شبکه ای برای مرحله بخش بندی تصاویر بهتر آماده شوند. چهندار بینایی اطلاعاتی جند-ساختاری ارائه شده است که به ابزار مناسب برای تشخیص لبه‌های تصاویر شبکه به تصاویر بهبود یافته اعمال می‌شود. سپس، عملکردهای مورفولوژی با بازاریابی با حفظ ویژگی‌های لبه در گره‌های نازک، زوایه تصویر لبه را حذف می‌کند. پس از بهبود عملکرد این عملکردها آن ها را با استفاده از اطلاعاتی جند-ساختاری پیاده سازی می‌کنیم. در نهایت، یک شیوه آستانه‌گذاری ساده بر روی تصاویر خروجی مرحله قبل بهبود آنالیز اجزای بهم‌پیوسته (CCA) و فیلتر طول مشخصه‌ای که کدامیک از لبه‌های پایه سربروط به گره‌های خویش است. برای استفاده مؤثرتر از آنالیز اجزای بهم پیوسته، CCA و فیلتر طول، اعمال بر روی کل تصاویر بصورت محلی انجام می‌دهیم. نتایج عملی بر روی یک بانک داده معروف، DRIVE، نشان داد که گره‌های خویش تصاویر شبکه با اعمال پیشنهادی بهبودی قابل تشخیص هستند.

کلید واژه‌های: تشخیص گره‌های خویش، تبدیل کرولت سریع گسته، مورفولوژی با اطلاعات جند-ساختاری، عملکردهای مورفولوژی با پیچش‌هایی، تصاویر شبکه.
<table>
<thead>
<tr>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>فهرست مطالب</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>فهرست جدول ها</td>
</tr>
<tr>
<td>۶</td>
<td>فهرست شکل ها</td>
</tr>
<tr>
<td>۱</td>
<td>فصل ۱ - مقدمه</td>
</tr>
<tr>
<td>۱-۱</td>
<td>پیش‌گفتار</td>
</tr>
<tr>
<td>۱-۲</td>
<td>آناتومی شبکه</td>
</tr>
<tr>
<td>۵-۱</td>
<td>بیان مسئله</td>
</tr>
<tr>
<td>۶-۱</td>
<td>شیوه‌هایی که تا کنون پیشنهاد شده</td>
</tr>
<tr>
<td>۷</td>
<td>استفاده از فیلترهای وفی</td>
</tr>
<tr>
<td>۸</td>
<td>استفاده از فیلتر مکانی تشخیص دهنده خط</td>
</tr>
<tr>
<td>۹</td>
<td>استفاده از ویژگی‌های رگه‌ای خونی و طبقه بندی کننده</td>
</tr>
<tr>
<td>۱۰</td>
<td>استفاده از مفهوم پنجره گذاری</td>
</tr>
<tr>
<td>۱۱</td>
<td>جمع‌بندی</td>
</tr>
<tr>
<td>۱۲</td>
<td>فصل ۲ - تبدیل کرولت</td>
</tr>
<tr>
<td>۱۳۱-۲</td>
<td>مقدمه</td>
</tr>
<tr>
<td>۱۳۲-۱</td>
<td>آنالیزهای چند-مقاومی کلاسیک</td>
</tr>
<tr>
<td>۱۳۴-۲</td>
<td>تبدیل کرولت گسته جدید</td>
</tr>
<tr>
<td>۱۵۷۲</td>
<td>تبدیل هایی کرولت زمان-پیوسته</td>
</tr>
<tr>
<td>۱۸۲-۲</td>
<td>تبدیل هایی کرولت رقیمی</td>
</tr>
<tr>
<td>۱۹۱-۲</td>
<td>هاله‌سازی رقیمی</td>
</tr>
<tr>
<td>۱۹۲-۲</td>
<td>تبدیل کرولت رقیمی توسط FFT</td>
</tr>
<tr>
<td>۱۹۴-۲</td>
<td>تبدیل کرولت رقیمی توسط شیوه لفافی</td>
</tr>
<tr>
<td>۱۹۲۷-۲</td>
<td>ساختار FDCT</td>
</tr>
<tr>
<td>۲۱۹۴-۲</td>
<td>تبدیل لفافی یک‌جای FDCT</td>
</tr>
<tr>
<td>۲۱۹۲-۲</td>
<td>نمایندگان ریزی</td>
</tr>
<tr>
<td>۲۱۹۳-۲</td>
<td>ایزوئتری و معکوس</td>
</tr>
</tbody>
</table>
فصل ۳ - پردازش توسط عملگرهای مورفولوژی

فصل ۴ - الگوریتم پیشنهادی جهت تشخیص رگه‌های خونی

فصل ۵ - تحقیق مبتنی بر منابع و اسناد
فصل ۵ - نتایج عملی ... ۷۱
۱-۵ مقدمه .. ۷۱
۲-۵ بانک داده DRIVE ... ۷۲
۳-۵ پیاده‌سازی الگوریتم پیشنهادی .. ۷۵
۴-۵ ارزیابی الگوریتم پیشنهادی ... ۷۵
۴-۵ ارزیابی الگوریتم بهبود کنترل.. ۸۰
۴-۵ ارزیابی بخش بندی تصویر.. ۸۲
۵-۵ جمع‌بندی ... ۸۲
فصل ۶ - جمع بندي، نتیجه گيري و پیشنهادات ۸۳
۶-۶ جمع بندي ... ۸۳
۶-۶ بحث و نتیجه‌گیری ... ۸۵
۶-۶ پیشنهادات ... ۸۶
۷-۶ فهرست مراجع ... ۸۷
<table>
<thead>
<tr>
<th>شماره جدول</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 2-1</td>
<td>مدت زمان اجرا و خطای پیابدهسازی بر مبنای شیوه لفافی</td>
</tr>
<tr>
<td>جدول 2-2</td>
<td>مدت زمان اجرا و خطای پیابدهسازی بر مبنای شیوه USFFT</td>
</tr>
<tr>
<td>جدول 5-1</td>
<td>ارزیابی کمی الگوریتم بهبود کنترل است تضاءل مشابههی</td>
</tr>
<tr>
<td>جدول 5-2</td>
<td>ارزیابی کمی الگوریتم بخش بندي تصاویر مشابهه و مقایسه با برخی روش های موجود</td>
</tr>
</tbody>
</table>

صفحه 5
<table>
<thead>
<tr>
<th>شماره</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل 1</td>
<td>تصویر شبکه دیده شده از طریق دستگاه مشاهده فقر جشم</td>
</tr>
<tr>
<td>شکل 2</td>
<td>طرح متغیر از جشن آسان با برگزش میان شماتیک شبکه</td>
</tr>
<tr>
<td>شکل 3</td>
<td>زیرگشایی شبکه به همراه ویژگی های استخراج شده</td>
</tr>
<tr>
<td>شکل 4</td>
<td>کفپوش کرولت در مکان و فرکانس</td>
</tr>
<tr>
<td>شکل 5</td>
<td>کفپوش رقومی پایه</td>
</tr>
<tr>
<td>شکل 6</td>
<td>لافایی داده به داخل یک مستطیل با متون بسازی</td>
</tr>
<tr>
<td>شکل 7</td>
<td>نوسلط شیوه پیادهسازی لافایی FDCT</td>
</tr>
<tr>
<td>شکل 8</td>
<td>مراحل پیادهسازی X</td>
</tr>
<tr>
<td>شکل 9</td>
<td>5: کرولت ها در درست‌شدن مقياس</td>
</tr>
<tr>
<td>شکل 10</td>
<td>4: کرولت ها در مقياس‌های ریز بزرگ‌شونده</td>
</tr>
<tr>
<td>شکل 11</td>
<td>3: موجه‌کردن و کرولته در ریزترین مقياس</td>
</tr>
<tr>
<td>شکل 12</td>
<td>2: الامان‌های ساخت برای N=3 و دقت زاویه 15°</td>
</tr>
<tr>
<td>شکل 13</td>
<td>1: الامان ساخت</td>
</tr>
<tr>
<td>شکل 14</td>
<td>B 7×7</td>
</tr>
<tr>
<td>شکل 15</td>
<td>X</td>
</tr>
<tr>
<td>شکل 16</td>
<td>Y</td>
</tr>
<tr>
<td>شکل 17</td>
<td>انسان هندسی یک تصویر ورودی با ای‌دی یا مجموعه Y در حدود الگوی هندسی</td>
</tr>
<tr>
<td>شکل 18</td>
<td>4: انسان یک سیگنال یک-بعدی یا توجه به سیگنال الگو</td>
</tr>
<tr>
<td>شکل 19</td>
<td>3: انسان هندسی در مقابل انسان شرطی</td>
</tr>
<tr>
<td>شکل 20</td>
<td>2: سایس هندسی یک سیگنال یک-بعدی علامت آب توجه به سیگنال الگو یا</td>
</tr>
<tr>
<td>شکل 21</td>
<td>1: بازسازی مورفولوژی توسط انسان یک سیگنال یک-بعدی</td>
</tr>
<tr>
<td>شکل 22</td>
<td>8: بازسازی مورفولوژی توسط سایس یک سیگنال یک-بعدی</td>
</tr>
<tr>
<td>شکل 23</td>
<td>7: بازسازی مورفولوژی توسط سایس یک سیگنال یک-بعدی</td>
</tr>
<tr>
<td>شکل 24</td>
<td>6: بازسازی مورفولوژی توسط انسان روز گراف</td>
</tr>
<tr>
<td>شکل 25</td>
<td>5: گشایش با بازسازی یک تصویر بازشی</td>
</tr>
<tr>
<td>شکل 26</td>
<td>4: مقایسه گشایش مورفولوژی اولیه با شیوه گشایش با بازسازی</td>
</tr>
<tr>
<td>شکل 27</td>
<td>3: اعمال بستگی مورفولوژی و بستگی با بازسازی روز تصویر بلاک مشایی</td>
</tr>
<tr>
<td>شکل 28</td>
<td>2: تصویر سه باند تر، سبز، آبی از تصویر شماره 2 بانک داده و هیستوگرام مربطه</td>
</tr>
<tr>
<td>شکل 29</td>
<td>1: نتایج الگوریتم پیدا کردن ناحیه فاندی</td>
</tr>
<tr>
<td>شکل 30</td>
<td>4: ضرایب کرولت اصلاح شده در برابر ضرایب اولیه</td>
</tr>
<tr>
<td>شکل 31</td>
<td>3: نتایج اعمال الگوریتم بهبود کننست بر روی تصویر شماره 2 بانک داده</td>
</tr>
</tbody>
</table>
شکل 4-۵: پیاده‌سازی الگوریتم آنالیز اجزای بهم پیوسته روي تصویر نمونه خاکستری مقياس

شکل ۵-۱: نتایج پیاده‌سازی الگوریتم پیشنهادی

شکل ۵-۲: مقایسه نتایج شیوه‌های مختلف بهبود کنتراست روي تصویر شماره ۱ بانک داده

[2] Available at: http://webvision.med.utah.edu/sretina.html#start

[40] Images are available at: http://www.isi.uu.nl/Research/Databases/DRIVE/.

Abstract

In this thesis, we analyzed the retinal images. Retinal images can be used in several applications such as ocular fundus operations as well as human recognition. Also, they play important roles in detection of some disease in early stages such as diabetes; which can be performed by comparison of the states of retinal blood vessels during time. Retinal images' intrinsic characteristics make the blood vessel detection process difficult. Here, we proposed a new algorithm to detect the retinal blood vessels effectively. Due to the high ability of the Curvelet transform in representing the edges, modification of Curvelet transform coefficients to enhance the retinal image edges, prepares the image better for the segmentation part. The directionality feature of multi-structure elements method makes it an effective tool in edge detection. Hence, morphology operators using multi-structure elements are applied to the enhanced image in order to find the retinal image ridges. Afterwards, morphological operators by reconstruction eliminate the ridges not belonging to the vessel tree while trying to preserve the thin vessels unchanged. In order to increase the efficiency of morphological operators by reconstruction, they were applied using multi-structure elements. A simple thresholding method along with Connected Components Analysis (CCA) indicates the remained ridges belonging to vessels. In order to utilize CCA more efficiently, we locally applied the CCA and Length filtering instead of considering the whole image. Experimental results on a known database, DRIVE, proved that the blood vessels can be effectively detected from background by applying our method on the retinal images.

Index Terms— Blood vessel detection, Curvelet transform, multi-structure elements morphology, morphological operators by reconstruction, retinal Images.
Retinal Image Blood Vessel Detection Using Curvelet Transform and Multi-Structure Elements Morphology

Thesis
Submitted in Fulfillment of the
Requirements for the Degree of Master of Science (M.Sc.)
in Biomedical Engineering, Bioelectric

Department of Biomedical Engineering
School of Electrical and Computer Engineering
Tarbiat Modares University

By:
Mohammad Saleh Miri

Supervisor:
Dr. Ali Mahloojifar

March 2010