پایان نامه دوره کارشناسی ارشد مهندسی برق - الکترونیک

طراحی و شبیهسازی ترانزیستور آی ماس با نوار انرژی مهندسی شده بر پایه Si-SiGe

حمیده گداژگر

استاد راهنما:

دکتر محمد کاظم مروج فرشی

استاد مشاور:

دکتر مرتضی فتحی پور

زمستان 1390
تاییدیه اعضا ی هیئت داوران حاضر در جلسه دفاع از پایان نامه کارشناسی ارشد

خانم هیده گداغی پایان نامه 6 واحده خود را با عنوان طراحی و شیب سازی ترانزیستور آی ماس در تاریخ 1367/11/15 ارائه گردید. اعضای هیئت داوران نشانه نهایی این پایان نامه را از نظر قریب و محبت تایید کرده و پذیرش آن را برای اخذ درجه کارشناسی ارشد الکترونیک پیشنهاد می‌کنند.

<table>
<thead>
<tr>
<th>اسم</th>
<th>رتبه علمی</th>
<th>نام و نام خانوادگی</th>
<th>پژوهش هیئت داوران</th>
</tr>
</thead>
<tbody>
<tr>
<td>استاد</td>
<td>دکتر محمد کاظم مرجع لری</td>
<td>استاد راهنمای</td>
<td></td>
</tr>
<tr>
<td>استاد مشاور</td>
<td>دکتر مرتضی فتحی پور</td>
<td></td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر دارود قطحی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>استاد ناظر</td>
<td>دکتر سید مسیح مهاراده</td>
<td></td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر دارود قطحی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدیر گروه</td>
<td>(با نام پایه، گروه تخصصی)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نور به ایشان چالیب و انتشار بایان نامه (رساله)‌های تحصیلی دانشجویان دانشگاه تربیت مدرس، می‌گویم یکی از فعالیت‌های علمی - پژوهشی دانشگاه است. با این حال، و رعایت حقوق دانشگاهیان امروزگان این دانشگاه نسبت به رعایت موارد ذیل معطوف می‌شود:

ماده ۱: در صورت اقتضاء به چالیب بایان نامه (رساله) یک خود، مردان را قبلاً به طور کلی به «دفتر نشر انتشار» دانشگاه اطلاع دهد.

ماده ۲: در صفحات سوم کتاب (پس از بیان شناسانه) عبارات ذیل را چالیب کند:

«دانشگاه تربیت مدرس به کارشناسی ارشد/رساله دکتری نگارش در رشته .. است که در .. مشارکت سرکار خانم/جانب آقای دکتر .. و .. دفاع شده است.»

ماده ۳: به منظور حفظ خصوصیت از هر یادداشتی انتشارات دانشگاه، تعداد پیک درصد شمارگان کتاب (در هر نوشته) را به «دفتر نشر انتشار» دانشگاه اهدای کند. دانشگاه می‌تواند مارک نیاز خود را به نفع مرکز نشر در معرض فروش قرار دهد.

ماده ۴: در صورت عدم رعایت ماده ۲ و ۳، بهای شمارگان چالیب به شرط داده خصوصیات به دانشگاه تربیت مدرس تأیید نمی‌شود.

ماده ۵: دانشجویان به نص و قبیل می‌کنند در صورت نیاز به مدتکاری از دریافت بیای خصوصات، دانشگاه می‌تواند مارک‌سازی شده جهت فراهم کردن مدارک ذیل، از طریق دادگاه، معاوضه و مدتکاری در ماده ۷ از محل توافق کارشناسی عرضه نشانهداردند برای فروش، نام نماید.

ماده ۶: انجام حمیده گداغر مفعول کارشناسی ارشد

تعهد فوق وضمنات اجرایی آن را قبول کرده، به انتظار می‌باشم.

نام و نام خانوادگی: حمیده گداغر

تاريخ: 1391/1/20

[署名]
دستور العمل حق مالکیت مادی و معنوسی در مورد نتایج پژوهشی علمی دانشگاه تربیت مدرس

مقدمه: با علایق به سیاست‌های پژوهشی دانشگاه در راستای تحقیق عملی و کرامت انسانی که لازم شکوفایی علمی و فنی است و رعایت حقوق مادی و معنایی دانشگاه و پژوهشگران، لازم است اعضای هیات علمی، دانشجویان، دانش آموختگان و دیگر همکاران مطرح. در مورد نتایج پژوهشی علمی که تحت عنوان پایان‌نامه، رساله و طرح‌های تحقیقاتی که با همانگی دانشگاه انجام شده است، موارد ذیل را رعایت نماید:

ماده ۱- حقوق مادی و معنی‌پذیر پایان‌نامه/رساله‌های مصوب دانشگاه متعلق به دانشگاه است.

مصوب دانشگاه باشد.

ماده ۲- انتشار مقالات مستند مسئول توسط پایان‌نامه/رساله به صورت چاپی در نشریات علمی و یا ارائه در مجامع علمی باید به نام دانشگاه بوده و استادان، اlehمه مسئول مقالات مقاله باشد.

ماده ۳- انتشار کتاب حاصل از نتایج پایان‌نامه/رساله و تمامی طرح‌های تحقیقاتی دانشگاه باید با مجوز کتبی صادره از طریق جوزه پژوهشی دانشگاه و بر اساس آن نامه های مصوب انجام شود.

ماده ۴- ثبت اخراج و تدريس دانش فنی و یا ارائه در جشنواره‌های ملی، منطقه‌ای و بین‌المللی که حاصل نتایج مستند از پایان‌نامه/رساله و تمامی طرح‌های تحقیقاتی دانشگاه باید با همانگی استادان راهنما به جوی‌اندی به منظور جوزه پژوهشی دانشگاه ادامه گیرد.

ماده ۵- اجتناب نتایج مستند در ۵ ماه و یک تیم‌بندی در تاریخ ۱۲۹۸/۵/۲۵ در شورای پژوهشی دانشگاه به صورت رسیده و از تاریخ تصدیق لازم اجرا است و هرگونه تخلف از مفاد این دستورالعمل از طریق مراجع قانونی قابل پیگیری می‌شود.

نام و نام خانوادگی
حمیده نادری
عضو
تقدیم به مادر و پدرم که چراغ‌های راه زندگی ام بوده‌اند
و برادرم که تفکر را از او آموخته‌ام
و خواهرم که دوست همیشه‌گی است
و تقدیم به همسرم که دلسوزانه و استادانه یارم بوده است.
تشکر و قدردانی

تشکر ویژه‌‌ی خود را تقدیم می‌کنم به استاد گروه‌کاری جنب آقای دکتر متوج فرخی که با راهنمایی‌های با
ارزش و دلسروانی خود، اینچنین را در تهیه و تکمیل این پایان نامه یاری رساندند.

تشکر می‌کنم از استاد فرمانه جنب آقای دکتر فتحی‌پور که با راهنمایی‌های روشنگر خود مسیر پیشرفت
پایان نامه را هم‌وار کرده‌اند.

بر خود لازم می‌دانم از تمامی اساتید گروه الکترونیک دانشگاه تربیت مدرس به خاطر زحماتی که در راه
تربیت پایان نامه متحمل شده‌اند، تشکر کنم.

و در آخر از همه‌ی دوستان و عزیزانی که مرا در تهیه و تدوین این پایان نامه یاری رسانده‌اند به ویژه خانم
مهندس آهنگری، کمال تشکر را می‌نمایم.
چکیده

یکی از محدودیت‌های اساسی در مینیاتورسازی ترانزیستورها، محدود بودن شیب زیر آستانه آن‌ها به 60mV/dec در دمای اتاق است. آی-ماس (I-MOS) که مبتنی بر یونیپزیسیون برخودری است، این mV/dec محصول دارای mV/dec کاهش داده است. آی-ماس یک نانوترانزیستور با ساختار p-i-n با دارای n-کار تزریق حامل در این افزاره بر اساس یونیپزیسیون برخودری در ناحیه دهی است. با توجه به ابعاد بسیار کوچک این ساختار، ولتاژ شکست و پیداکننده تنولزی نوار به نوار جالش‌های اساسی در آی-ماس به حساب می‌آید.

در این پایان‌نامه ساختاری برای آی-ماس ارائه شده است که هم ولتاژ شکست و هم تنولزی نوار به نوار ۱۰ nm را کاهش می‌دهد، در این ساختار با طول گیت ۵ nm از رهیافت مهندسی ساختار نوار انرژی میان Si و درین از جنس Si گیت به سمت سوز سوز گیت انرژی می‌آید. مطمئنی قسمت کانال است و طراحی آن به‌گونه‌ای است که از جنس درین است. بخشی واقعی گیت نیست کانال از جنس Si گیت تغییر می‌یابد. بده صورت به سمت تقریب‌های استفاده شده است. این پیش‌بینی که زیر یوشنگ گیت نیست دراین می‌شود. این می‌تواند نمایش دهنده سیستم بزرگ گیت به سمت سوز گیت انرژی می‌آید. در این پیش‌بینی، کانال از جنس Si گیت به سمت بزرگ گیت به سمت سوز گیت نیست دراین می‌شود. این می‌تواند نمایش دهنده سیستم بزرگ گیت به سمت سوز گیت انرژی می‌آید.

1 Impact Ionization MOS
2 Band to band tunnelling
کلید وارژن نانو ترانزیستور، آی ماس، تونلزنی نوار به نوار، ولتاز شکست، یونیتراسیون برخوردی.
<table>
<thead>
<tr>
<th>عنوان</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فهرست مطالب</td>
<td></td>
</tr>
<tr>
<td>فهرست جدول ها</td>
<td></td>
</tr>
<tr>
<td>فهرست شکل ها</td>
<td></td>
</tr>
<tr>
<td>فصل 1 مقدمه</td>
<td></td>
</tr>
<tr>
<td>1-1 تأثیر شیب زیر آستانه در جریان نشیت</td>
<td></td>
</tr>
<tr>
<td>1-2 ویژگی های افزاره‌ی دارای شیب زیر آستانه‌ی کوچک</td>
<td></td>
</tr>
<tr>
<td>1-3 انواع افزاره‌ها با شیب زیر آستانه‌ی کوچک</td>
<td></td>
</tr>
<tr>
<td>4-1-1 401-10-آی ماس (ترانزیستور پروپزاسین پرخوردي)</td>
<td></td>
</tr>
<tr>
<td>4-1-2 401-20-آی ماس</td>
<td></td>
</tr>
<tr>
<td>4-2 هدف و روند کلی پایان نامه</td>
<td></td>
</tr>
<tr>
<td>فصل 2  پروپزاسین پرخوردي و شکل بهمنی</td>
<td></td>
</tr>
<tr>
<td>2-1 مقدمه</td>
<td></td>
</tr>
<tr>
<td>2-2 پروپزاسین پرخوردي</td>
<td></td>
</tr>
<tr>
<td>2-3 شکلت بهمنی</td>
<td></td>
</tr>
<tr>
<td>2-4 بررسی و نتایج شکلت</td>
<td></td>
</tr>
<tr>
<td>2-5 نتیجه‌گیری</td>
<td></td>
</tr>
<tr>
<td>فصل 3  401-10-آی ماس (ترانزیستور پروپزاسین پرخوردي)</td>
<td></td>
</tr>
<tr>
<td>3-1 مقدمه</td>
<td></td>
</tr>
<tr>
<td>3-2 ساختار آی ماس</td>
<td></td>
</tr>
<tr>
<td>3-3 بایاس کردن آی ماس</td>
<td></td>
</tr>
<tr>
<td>3-4 چگونگی عملکرد آی ماس</td>
<td></td>
</tr>
<tr>
<td>3-5 چگونگی روشان شدن آی ماس (بررسی حالت گذرا)</td>
<td></td>
</tr>
<tr>
<td>3-6 جریان خاموش</td>
<td></td>
</tr>
<tr>
<td>4-1 401-10-6-5 تولید زمان نوار به نوار</td>
<td></td>
</tr>
<tr>
<td>4-2 401-10-7-3 تفاوت عملکرد آی ماس و ماسفت</td>
<td></td>
</tr>
<tr>
<td>4-3 401-7-3-1 حیات روشان</td>
<td></td>
</tr>
<tr>
<td>4-4 401-20-7-2 آثار کنال کوتاه</td>
<td></td>
</tr>
<tr>
<td>4-5 401-8-3 تأثیر تغییر ابعاد روی عملکرد آی ماس</td>
<td></td>
</tr>
<tr>
<td>4-6 401-8-3-1 تأثیر طول گیت روی عملکرد آی ماس</td>
<td></td>
</tr>
<tr>
<td>5-3 401-8-3-2 تأثیر ضخامت لایه Si روی عملکرد آی ماس</td>
<td></td>
</tr>
<tr>
<td>6-3 401-9-3-2 ساختارهای بهبود یافته ترانزیستور آی ماس</td>
<td></td>
</tr>
<tr>
<td>صفحه</td>
<td>ناوی</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>42</td>
<td>SiGe</td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
# فهرست جدول‌ها

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>جدول ۱-۳-پارامترهای استفاده شده در شبیه‌سازی ساختار آی ماس [۵۷] SiGe</td>
</tr>
<tr>
<td>۴۶</td>
<td>جدول ۲-۳-ولتژ سوس و ولتژ آستانه برای نسبت‌های مختلف Lg/LIN</td>
</tr>
<tr>
<td>۵۱</td>
<td>جدول ۳-۳-پارامترهای استفاده شده در شبیه‌سازی ساختار ناهگون آی ماس [۱۴]</td>
</tr>
</tbody>
</table>
شکل 2-۳۱: نمودار جریان دریانگی در میزان نور انرژی برای میدان افراشی بهره‌های نوع 
\[ E_{21}-MOS \] و \[ SiGe \] مقایسه‌ای نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۲: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۳: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۴: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۵: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۶: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۷: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۸: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۳۹: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۰: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۱: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۲: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۳: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۴: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۵: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۶: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۷: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.

شکل 2-۴۸: مقایسه‌ی نمودار نور انرژی برای آی ماس \[ Si \] و آی ماس \[ SiGe \] با میدان افراشی بهره‌های نوع 
\[ n \] بهبود گیت برابر آی ماس نوع \[ n \] می‌باشد.
شکل ۴-۲: حالت های متفاوت فرآیند بازتربیک اوورز [۲۱].
شکل ۴-۳: ساختار PI-MOS شبیه سازی شده [۱۱].
شکل ۴-۴: نمودار جریان در سیستم گیت برای یک آی ماس نوع p در نسبت های مختلف L_G/L_IN.
شکل ۴-۵: نمودار میدان الکتریکی برای یک آی ماس نوع p در نسبت های مختلف L_G/L_IN.
شکل ۴-۶: نمودار حاصل از شبیه سازی ساختار آی ماس نوع p در نسبت های مختلف L_G/L_IN.
شکل ۴-۷: نمودار میدان الکتریکی برای یک آی ماس نوع n در حالت خاموش و برقراری شرط‌های توپل زنی نوار به نوار.
شکل ۴-۸: نمودار شکاف انرژی برای ال (آی ماس SiGe و چ) ساختار پیشنهادی.
شکل ۴-۹: نمودار نوار انرژی برای ساختار پیشنهادی.
شکل ۴-۱۰: نمودار شیمای ساختار پیشنهادی آی ماس با نوار برقانی.
شکل ۴-۱۱: نمودار شکاف انرژی برای GI-MOS V_GS=۰ و V_DS=۰ در ۰GI-MOS.
شکل ۴-۱۲: نمودار انرژی برای دو افزودهGI-MOS و SiGe I-MOS V_GS=۰ و V_DS=۰ در ۰GI-MOS.
شکل ۴-۱۳: منحنی جریان در سیستم گیت برای ساختار GI-MOS V_DS=۰ و V_GC=۰ در ۰SiGe I-MOS.
شکل ۴-۱۴: مقایسه جریان خاموش برای دو ساختار GI-MOS و آی ماس SiGe.

۸۳بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۴بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۵بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۶بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۷بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۸بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۸۹بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.
۹۰بیانات محاسباتی برای دو ساختار GI-MOS و آی ماس SiGe.


Abstract

One of the most critical issues in miniaturization of MOS transistors is their subthreshold slope that is limited to 60 mV/dec, at room temperature. It has been shown that this parameter in an impact ionization MOS (I-MOS) structure can be reduced to 5mV/dec. I-MOS is a nano transistor with gated p-i-n structure. Unlike in a MOSFET, the type of dopants in the source (S) and drain (D) in an I-MOS are opposite to each other. The metal gate covers only a part of the intrinsic channel. The high field in within the nano-scaled channel generates carriers needed for injection by impact ionization mechanism, from the source to channel. In a nano-scale I-MOS transistor, the band to band tunnelling (BTBT) is a mechanism that can affect the OFF current. Moreover the breakdown voltage also needed to be as small as possible. Our aim is to reduce BTBT and the voltage required for impact ionization of carriers to take place.

In this thesis, we present a novel I-MOS with a band engineered (graded) $Si_{1-x}Ge_x$. The drain material is assumed to be made of $N^+-Si_{0.5}Ge_{0.5}$, whereas the source is made of $P^+-Si$. The gated part of the channel is assumed to be intrinsic $Si_{0.5}Ge_{0.5}$, while the rest of the channel is supposed to be band engineered $Si_{1-x}Ge_x$, in which $x$ varies linearly from the source edge to the gate (i.e., $0<x<0.5$). The device dimensions are: gate length $L_G=50$nm, length of the graded part $L_X=50$ nm. The bandgap variation in the graded part of the channel ($Si_{1-x}Ge_x$) has reduced the BTBT mechanism and hence the device OFF current, in comparison to those already found in their homojunction counterparts made of either Si or $Si_{0.5}Ge_{0.5}$. In addition the larger slope of the energy-band in the proposed structure is shown to reduce the source-drain voltage $V_{DS}$ required for impact ionization to occur. Simulations show one order of magnitude reduction in the OFF current and 0.3 V reduction in the device breakdown voltage compared to those of $Si_{0.5}Ge_{0.5}$-IMOS which
has also shown to be superior to the Si-IMOS, all similar dimensions. Furthermore, the
device subthreshold slope for the proposed GI-MOS is ~3mV/dec.

**Keywords**: Band to Band Tunneling, Breakdown Voltage, Graded Impact Ionization MOS (GI-MOS), Impact ionization MOS, Nano transistor.
Design And Simulation of With Band-Engineered I-MOS Transistor Based on Si-SiGe

Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (M.Sc.) in Electrical Engineering, Control Systems

Department of Electrical Engineering
School of Electrical Engineering
Tarbiat Modares University

By:
Hamideh Godazgar

Supervisor:
Dr. M. K. Moravvej-Farshi

Advisor:
Dr. M. Fathipour

Winter 2012