تاپیه‌ی اعضای هیئت داوران حاضر در جلسه دفاع از رساله دکتری آقای سیدمحمد شاکوهی رساله ۴۴ واحدی خود را با عنوان کنترل موتور BLDC در حضور خطای انحراف محرکی استاتیک روتور در تاریخ ۱۳۹۲/۱۲/۱۷ ارائه کرده‌اند.

اعضای هیئت داوران نسخه نهایی این رساله را از نظر قریب و محترم تایید کرده‌اند. پذیرفته شده‌اند.

<table>
<thead>
<tr>
<th>نام و نام خانوادگی</th>
<th>رتبه علمی</th>
<th>عنوان هیئت داوران</th>
</tr>
</thead>
<tbody>
<tr>
<td>دکتر مصطفی عمادیان</td>
<td>استاد راهنما</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر سید ابراهیم انجهنیا</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر محسن پارسا مقدم</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر علی یزدانی ورجانی</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر ابوالفضل واحده</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر شهردار کابلی</td>
<td></td>
</tr>
<tr>
<td>استاد</td>
<td>دکتر علی یزدانی ورجانی</td>
<td></td>
</tr>
<tr>
<td>مدیر گروه (با نامه ولیعهد، نام خصوصی)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
حق مالکیت مادی و معنوی در مورد نتایج پژوهشی علمی دانشگاه تربیت مدرس

مقدمه: با عنوان به سیاست‌های پژوهشی و فناوری دانشگاه در راستای تحقق عدالت و کرامت انسان‌ها که لازم شکوفایی علمی و فنی است و رعایت حقوق مادی و معنوی دانشگاه و پژوهشگران، لازم است اعضای هیأت علمی، دانشجویان، دانشجو و دیگر همکاران طرح در مورد نتایج پژوهشی علمی که تحت عنوان پایان‌نامه، رساله و طرح‌های تحقیقاتی با هماهنگی دانشگاه انجام شده است، موارد زیر را رعایت نمایند:

ماده 1- حق نشر و تکثیر پایان‌نامه، رساله و درآمدی حاصل از آنها متعلق به دانشگاه می‌باشد ولی حقوق معنوی پدید آورده‌گان محفوظ خواهد بود.

ماده 2- انتشار مقاله با مقالات مستخرج از پایان‌نامه، رساله به صورت چاپ در نشریات علمی و یا ارائه در مجمع علمی‌های به دانشگاه بوده و با تایید استاد راهنمای اصلی، یکی از استادان راهنمای، مشاور و یا دانشجو مسئول مکاتبات مقاله باشد. وی مستندات علمی مقاله مستخرج از پایان‌نامه و رساله به عده استادان راهنمای و دانشجو می‌باشد.

ماده 3- انتشار کتاب، نرم‌افزار و یا آثار ویژه (اثر هنری مانند فیلم، عکس، نقاشی و نمایشنامه) حاصل از نتایج پایان‌نامه، رساله و تمامی طرح‌های تحقیقاتی کلیه واحد‌های دانشگاه اعم از دانشگاه‌ها، مرکز تحقیقاتی، پژوهشگاه‌ها، بانک علم و فناوری و دیگر واحدهای باید با مجوز کتبی صادر از معاونت پژوهشی دانشگاه و براساس آن نامه‌ها صورت انجام شود.

ماده 4- نتیجه‌گیری و تدوین دانش فنی و یا ارائه یافته‌ها در جشنواره‌های ملی، منطقه‌ای و بین‌المللی که حاصل نتایج مستخرج از پایان‌نامه، رساله و تمامی طرح‌های تحقیقاتی دانشگاه‌ها با هماهنگی استاد راهنمای با مجریان طرح از طریق معاونت پژوهشی دانشگاه انجام گیرد.

ماده 5- این ماده نماینده در ماده و یک تبصره در تاریخ 1387/10/02 و 1387/10/03 در هیأت رییسه دانشگاه به تایید رسید و در جلسه همواره 1387/10/06 تاریخ تصویب در شورای دانشگاه لازم‌الاجرا است.

«بنیان نهاد محمد شاکوی دانشجوی رشته مهندسی برق-قدرت ورودی سال تحصیلی 1387 مقلع دکتری دانشکده مهندسی برق و کامپیوتر معنی می‌شوم که نکات مستطیل این نامه حق مالکیت مادی و معنوی در مورد نتایج پژوهشی علمی دانشگاه تربیت مدرس را در انتشار یافته‌های علمی مستثنی از رساله و طرح‌های تحقیقاتی خود رعایت نمی‌کند. در صورت تخلف از مفاد این نامه فوق الاعزه به دانشگاه، کمیته و معاونتی که از طرف انجمن بسی به لغو انتخاب انتخاب لنده و یا به گونه امتیاز دیگر و تغییر آن به این دانشگاه اقدام نماید، ضمناً نسبت به جبران فوری ضرر و زیان حاصل بر اساس بروز وابستگی اقدام خواهم نمود و بدون رضوی حاکم‌گونه امتیازی را از خود سلب نمود.

امضا

تاريخ: 1387/10/02
آیین نامه چاپ پایان نامه (رساله)‌های دانشجویان دانشگاه تربیت مدرس

نظر به اینکه چاپ و انتشار پایان نامه (رساله)‌های تخصصی دانشجویان دانشگاه تربیت مدرس مبین بخشی از فعالیت‌های علمی - پژوهشی دانشگاه است بنابراین به منظر آگاهی و رعایت حقوق دانشگاه دانش‌آموختگان این دانشگاه نسبت به رعایت موارد ذیل معنی‌دار می‌شود:

ماده ۱: در صورت اقدام به چاپ پایان نامه (رساله)‌ی خود میانبندی را قبل از طور کمی به دفتر نشر آثار علمی دانشگاه اطلاع دهد.

ماده ۲: در صفحه سوم کتاب (پس از برگ شناسنامه) عبارت ذیل را چاپ کند:

"کتاب حاضر، رساله دکتری نگارندگی در رشته مهندسی برق - قدرت است که در سال ۱۳۹۲ در دانشکده مهندسی برق و کامپیوتر دانشگاه تربیت مدرس به راهنمایی جناب آقای دکتر مصطفی بهمیدانیان از آن دفاع شده است.

ماده ۳: به منظور جبران بخشی از هزینه‌های انتشارات دانشگاه، تعداد یک درصد شماره نشریه بوده کتاب (در هر نوبت چاپ) را به دفتر نشر آثار علمی دانشگاه ادا کند. دانشگاه می‌تواند مزکور جبران خود را به رفع مرکز نشر در معرض قرار دهد.

ماده ۴: در صورت عدم رعایت ماده ۲، ۵۰/۰ بهای شماره چاپ، جامه راه عطوان خسارت به دانشگاه تربیت مدرس، تأديه کند.

ماده ۵: دانشجویان تعهد و قبول می‌کند در صورت خودداری از برداشت بهای خسارت، دانشگاه می‌تواند خسارتهای ذکررا از طریق مراجع قضایی مطالبه و وصول کند؛ به علاوه به دانشگاه حق می‌دهد به منظور استیفای حقوق خود، از طریق دادگاه، معادل وجو مذکور در ماده ۴ را از محل توقف کتاب‌های عرضه شده‌نگارنده برای فروش، تامین نماید.

ماده ۶: انجام سید محمد شاکوی دانشجوی رشته مهندسی برق - قدرت مقطع دکتر اتعهد فوق وضمان‌های اجرایی آن را قبول کرده، به آن ملتزم می‌شوم.

نام و نام خانوادگی: سید محمد شاکوی
تاریخ و امسا: ۱۰/۰۹/۹۳
کنترل موتور BLDC در حضور خطای انحراف محوری استاتیک روتور

سید محمد شاکوهی

استاد راهنما:
دکتر مصطفی محمدیان

استاد مloser:
دکتر سید ابراهیم افجهای

زمستان 1392
به بخش نازنین و همگار و پسر عزیزم، که در غل این سال‌ها کم‌گقابل مثل زندینی‌های زندگی وسایل بدرخشان تایی

ساخت مشوق‌سازی همگامی و برادری بدل و از همکاری در استفاده از نیازهای خودی، که دوست و سپری که‌ام‌داده‌بودن ذین‌آن خیرات خیلی نمی‌گذارد.

و ایشان برادر و خواهرم، که با برادرم که یه ساخت می‌خواهی به ادامه راه، خواهند گذاشته برادرم و دوستم تروسته‌بوده.
تشکر و قدردانی

آنکه سپاس بنده‌گان را بجا نیاورد، آفریدگار را سپاس گزار نبود.

وگویند سپاس خدا را که ما را بدين راه رهنمون شد و اگر خدا راه نمی‌یافتیم (اعراف، ۴۳)

بوردگار بلند مرتیه را شاکرم که در سایه‌ی اطاف‌ی بی‌گرانش این رساله به انجام رسید. اوی که هیچ‌گاه از هیچ بندادای حتمی به قدر لحظه‌ای غافل نمی‌گردد و با سپاس و قدردانی از استاد ارجماند، جناب آقای دکتر مصطفی محمدیان، که افتخار شاگردی خوشی را نصب این حفیظ نمودند و ذراحی از رهمودها، مهرابیها و افزار پردازش‌های وافر خوشی را از دیگر نامه‌椄. همچنین از جناب آقای دکتر سید ابراهیم افجه -ای که به عنوان مشاور نقش ارزنداده در انجام این پروژه داشتند، تشکر و قدردانی می‌نمایم.

بر خود لازم می‌دانم مراتب سپاس خوشی را از استاد بزرگوار، جناب آقایان دکتر پارسا‌ختم، دکتر یزدانی، دکتر بیران‌نیا، دکتر واحده و دکتر کاپالی که زحمت داوی رساله اینجانب را بر عهده داشته و نكات ارزنداد خود را در جهت بهبود سطح علمی و کیفی رساله در اختیار اینجانب قرار دادند، اعلام نمایم. از همه استادان و گرای دانشکده به خصوص استاد محترم گروه قدرت که افتخار فراموش ناشدنی آشناي و کسب فيوس علمی و اخلاقی این عزیزان نصب اینجانب گردید، سپاس گزارم.

همچنان بر خود لازم می‌دانم که از دوستان عزیزم، جناب آقای مهدیه‌گهریان و دانشجویان عزیز آزمایشگاه الکترونیک قدرت و حفاظت به خاطر فراهم نمودن جوی صمیمی توان با همدلی و همکاری طی این دوره کمال امتنان را داشته باشم.

و در نهایت از همسایگان، همدلی، صبوری و محبت‌ی انتهای همسر مهرابی و پسر عزیزم که تمامی کمیابیها و محدودیت‌ها را به مدت و با نهایت بزرگواری تحميل نمودند، سپاس گزارم. چه اگر این فداکاری و محبت یپایان نبود، هرگز قادر به ادامه راه نبودم. از پدر بزرگوار، مادر مهرابی و خانواده عزیزم به خاطر همراهی، حمایت، راهنمایی و محبت‌های یپایان اشان در کله مراحل زندگی سپاس گزارم. همچنان از خانواده متجاهر همسرم، به خصوص پدر خانم عزیزم و همسر محترم‌مان به خاطر بدل‌الاطف‌ خالصانه و مساعده‌ی مصیمانه در طول این سالان، کمال قدردانی‌ی را دارم.

سید محمد شاکوهی

بهرام ۱۳۹۳
چپیده

خطای انحراف محوری روتور از خطاهای شایعی است که می‌تواند در هر موتوری رخ دهد. در سال‌های اخیر تحقیقات گسترده‌ای جهت تشخیص خطای انحراف محوری روتور ارائه گردیده است. اگرچه، در زمان‌های کنترل مقوام در برای خطای انحراف محوری، پژوهشگاه‌های جدیدی صورت نگرفته است. لزوم استفاده از روش‌های کنترل مقوام در برای خطای انحراف محوری به دلیل اهمیت بهره‌برداری پیوسته از موتور در هنگام خطا و بهترین کیفیت ممکن در صنایع حساس می‌باشد. اعمال روش‌های کنترل متدال در هنگام خطا چندان موثر نمی‌باشد. چرا که در این روش‌ها اثرات خطای انحراف محوری همچون تغییرات در توزیع شار فصله‌هایی و محور، انرژی و شکل موج ولتاژ و تغییرات انرژی موتور و تغییرات انرژی موتور از نظر گرایش نمی‌شود. که این موضوع می‌تواند سبب بروز نامطلوبی‌های ناگواری در شکل موج اینتریورالی‌مехانیستی‌مغز موتور گردد. بنابراین یک استراتژی جدید کنترلی جهت بهبود کارکرد موتور در هنگام خطا بسیار سودمند خواهد بود. در این رسانه، دو استراتژی جهت کنترل موتور آهنری دایم BLDC در حضور خطای انحراف محوری استاتیک روتور ارائه گردیده است. روش اول، بر مبنای استراتژی کنترل جریان پیشنهادی می‌باشد. اساس این روش بر پایه تخمین آنلاین انرژی‌های فازی ولتاژ‌های فازی بار فاز در الهام از خطای انحراف محوری روتور می‌باشد. جهت اندوره‌گیری انرژی‌های فازی بار فاز موتور از یک جریان سینوسی فرکانس بالا و با دامنه کم، که توسط کنترل کننده بر جریان اصلی موتور تولید شده، استفاده می‌گردد. به‌طور گسترده جریان ولتاژ منتجه جهت تخمین انرژی‌های فازی بار فاز استفاده می‌شود. ولتاژ‌های الکتریکی لحظه‌ای فاز به فاز موتور نیز با یک الگوریتم محاسبه می‌گردد. در این روش بر خلاف روش‌های متدال، جریان فازی استاتیک با توجه به ولتاژ لاحیال لحظه‌ای فازی هدایت کننده به سیم پیچی فازی تزیین می‌گردد. استراتژی دوم بر اساس کنترل ولتاژ‌های انرژی‌های موتور می‌باشد. در این روش جهت محاسبه انرژی‌های فازی بار فاز موتور از طبیعت نمایی جریان فاز در لحظات خامش شدن جریان فاز استفاده می‌گردد. شار بینندی لحظه‌ای فاز به فاز موتور نیز با استفاده از معادلات الکتریکی موتور محاسبه می‌گردد.

در استراتژی پیشنهادی، کنترل کننده با توجه به تغییرات بارتری موتور به عمل وقوع خطای انحراف محوری ولتاژ پایان‌هایی موتور را به گونه‌ای تنظیم می‌نماید تا اثرات ارائه نامطلوب خط با صورت قابل توجه کاهش یابد. نتایج آزمایشگاهی کارایی روش‌های پیشنهادی را در کاهش ریل‌های کشتار الکترومغناطیسی و نوسانات سرعت مکانیکی موتور نشان می‌دهد.

واژه‌های کلیدی: انحراف محوری روتور، تخمین انرژی‌های فازی، ولتاژ لاحیال، استراتژی کنترل ماهیت موتور، استراتژی کنترلی جریانی.
فهرست مطالب

عنوان

صفحة

فهرست علامت و نشانهها... ج
فهرست جدولها... 5
فهرست شكلها... و
فصل 1 - مقدمه... 1

1- 1- بحث زمنية... 1
2- 1- تعريف مسالة.. 2
3- 1- اهداف اصلي رساله.. 3
4- 1- نما ي كلي رساله.. 4
فصل 2 - مورر ادييات... 5

5- 2- خطای انحراف محوری روتور.. 5
6- 2- اثرات خطای انحراف محوری روتور بر روي موتورهای آهربایي دائم... 7
7- 2- مطالعات تشخيص خطای انحراف محوری روتور... 12
8- 2- مطالعات جبرانسازی خطای انحراف محوری روتور... 20
9- 2- ضرورت تحقیق... 24
10- 2- نتیجه‌گیری... 25

فصل 2 - بررسی اثرات خطای انحراف محوری روتور بر روي اندوکتناس و ولتاژ

26- BLDC القایي موتور با استفاده از شبیه سازی FEM

26- 2- اندوکتناس و ولتاژ القایي موتور مورد مطالعه در حالت بدون خطا... 26
27- 2- اندوکتناس و ولتاژ القایي موتور در هنگام خطای انحراف استاتیک... 28
28- 2- اثرات خطای انحراف محوری روتور بر روی طیف فرکانسی ولتاژ القایي... 35
29- 2- نتیجه‌گیری... 37

فصل 3 - کنترل موتور BLDC در حضور خطای انحراف محوری روتور... 39

40- 4- روش کنترل متدال موتور BLDC... 40
فصل 5- مطالعه کارایی روش‌های پیشنهادی مقاوم در برای خطای نتایج آزمایشگاهی

فصل 5-1 موتور تحت آزمایش و تجهیزات و سخت افزار بکار رفته در نمونه آزمایشگاهی

فصل 5-2 نتایج آزمایشگاهی روش کنترل جریان پیشنهادی

فصل 5-3 نتایج آزمایشگاهی روش کنترل ولتاژ پیشنهادی

فصل 5-4 آنالیز حساسیت روش‌های کنترل پیشنهادی

فصل 5-5 مقایسه روش‌های کنترلی پیشنهادی

فصل 5-6 تحلیل فرکانسی ولتاژ القایی جریان و گشتاور موتور در حضور خطای انحراف محوری

فصل 5-7 نتیجه گیری

فصل 6- نتیجه گیری و پیشنهادات

فهرست مراجع

واژه نامه فارسی به انگلیسی

واژه نامه انگلیسی به فارسی
<table>
<thead>
<tr>
<th>عنوان</th>
<th>علامت اختصاصی</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول مینیمم فاصله هواپیمایی</td>
<td>(\delta_{\text{min}})</td>
</tr>
<tr>
<td>طول فاصله هواپیمای نرمال موتور</td>
<td>(\delta_0)</td>
</tr>
<tr>
<td>طول ماکزیمم فاصله هواپیمایی</td>
<td>(\delta_{\text{max}})</td>
</tr>
<tr>
<td>شدت خطا انحراف محوری روتور</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>فرکانس مولفه اصلی</td>
<td>(f_r)</td>
</tr>
<tr>
<td>تعداد قطعه‌های موتور</td>
<td>(P)</td>
</tr>
<tr>
<td>ولتاژ فاز (k) ام به نول</td>
<td>(V_{ka})</td>
</tr>
<tr>
<td>جریان فاز (k) ام</td>
<td>(i_k)</td>
</tr>
<tr>
<td>اندوند فاز فاز (k) ام</td>
<td>(L_k)</td>
</tr>
<tr>
<td>مقاومت فاز فاز (k) ام</td>
<td>(R_k)</td>
</tr>
<tr>
<td>شار پیوندی فاز (k) ام</td>
<td>(\lambda_k)</td>
</tr>
<tr>
<td>ولتاژ القابی فاز (k) ام</td>
<td>(e_k)</td>
</tr>
<tr>
<td>شار آهنربای روتور</td>
<td>(\lambda_{nm})</td>
</tr>
<tr>
<td>گشتاور الکترومغناطیسی</td>
<td>(T_e)</td>
</tr>
<tr>
<td>سرعت مکانیکی موتور</td>
<td>(\omega_m)</td>
</tr>
<tr>
<td>سیگنال حقیقی گسته و پریودیک</td>
<td>(x[n])</td>
</tr>
<tr>
<td>فرکانس اصلی سیگنال گسته</td>
<td>(\omega_p)</td>
</tr>
<tr>
<td>فرکانس سیگنال فرکانس بالای اعمالی</td>
<td>(\omega_{hf})</td>
</tr>
<tr>
<td>ولتاژ ولتاژ</td>
<td>(V_s)</td>
</tr>
<tr>
<td>ولتاژ جریان</td>
<td>(I_s)</td>
</tr>
<tr>
<td>ولتاژ باس</td>
<td>(V_{dc})</td>
</tr>
<tr>
<td>مقدار اولیه شار پیوندی</td>
<td>(\lambda_o)</td>
</tr>
<tr>
<td>پریود فنونه برداری</td>
<td>(\tau_{\text{samp}})</td>
</tr>
<tr>
<td>زمان خیز سیگنال</td>
<td>(\tau_r)</td>
</tr>
<tr>
<td>زمان فرود سیگنال</td>
<td>(\tau_f)</td>
</tr>
<tr>
<td>جریان فاز (k) ام هنگام خیز</td>
<td>(i_{rh})</td>
</tr>
<tr>
<td>جریان فاز (k) ام هنگام فرود</td>
<td>(i_{rk})</td>
</tr>
<tr>
<td>مقدار اولیه جریان فاز</td>
<td>(I_{0})</td>
</tr>
<tr>
<td>مقدار نهایی جریان فاز</td>
<td>(I_F)</td>
</tr>
</tbody>
</table>
ثابت زمانی مدار
تابع سوئیچینگ فازهای k و j
مقدار اولیه گشتاور الکترومغناطیسی
<table>
<thead>
<tr>
<th>عنوان</th>
<th>صفحه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول ۱-۱- مشخصات موتور تحت تست</td>
<td>۸</td>
</tr>
<tr>
<td>جدول ۱-۲- مشخصات موتور تحت آزمایش</td>
<td>۹</td>
</tr>
<tr>
<td>جدول ۲-۳- تغییرات دامنه مولفه های فرکانسی در جریان استاتور</td>
<td>۱۵</td>
</tr>
<tr>
<td>جدول ۲-۴- تغییرات دامنه مولفه های فرکانسی در گشتاور الکترو مغناطیسی</td>
<td>۱۶</td>
</tr>
<tr>
<td>جدول ۵-۱- مشخصات موتور تحت مطالعه</td>
<td>۶۴</td>
</tr>
</tbody>
</table>
فهرست شکل‌ها

<table>
<thead>
<tr>
<th>شماره</th>
<th>عنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>تفاوت خطا‌های انحراف محوری استاتیک و دینامیک روتور</td>
</tr>
<tr>
<td>2-2</td>
<td>خطا انحراف محوری روتور در یک موتور BLDC</td>
</tr>
<tr>
<td>2-3</td>
<td>شدت میدان مغناطیسی بر حسب شدت خطای انحراف محوری</td>
</tr>
<tr>
<td>2-4</td>
<td>تغییرات شدت میدان مغناطیسی بر حسب شدت خطای انحراف محوری 10/</td>
</tr>
<tr>
<td>2-5</td>
<td>شدت میدان مغناطیسی بر حسب زاویه در حضور خطای انحراف محوری 50/</td>
</tr>
<tr>
<td>2-6</td>
<td>شدت میدان مغناطیسی در شدت خطای متفاوت انحراف محوری استاتیک</td>
</tr>
<tr>
<td>2-7</td>
<td>دو قوس در حالت شرایط خطای انحراف محوری دینامیک</td>
</tr>
<tr>
<td>2-8</td>
<td>تحقق خطای انحراف محوری دینامیک</td>
</tr>
<tr>
<td>2-9</td>
<td>نتایج تبدیل فریم گیرنده فاز استاتور تحت شرایط خطای انحراف محوری</td>
</tr>
<tr>
<td>2-10</td>
<td>مشخصات فنی استاتور در حالت‌های مختلف از طریق نرمال ب)، نرمال ب)، نرمال ب)، نرمال ب)</td>
</tr>
<tr>
<td>2-11</td>
<td>شلف 2-12- تغییرات خطای انحراف محوری ب)، نرمال ب)</td>
</tr>
<tr>
<td>2-13</td>
<td>شلف 2-14- رفتار الکترو مغناطیسی در حالت‌های مختلف ب، نرمال ب)</td>
</tr>
<tr>
<td>2-15</td>
<td>شلف 2-16- مولفه هارمونیک 5/ جریان استاتور برای خطاهای مختلف و در شرایط واری</td>
</tr>
</tbody>
</table>
شکل ۲-۱۶ - مولفه هارمونیک هفتام جریان استاندار در حالت نرمال و خطای انحراف محوری استاتیک و در شرایط کاری مختلف موتور
شکل ۲-۱۶ - شکل موج ولتاز القابی در شدت های مختلف خطای انحراف محوری استاتیک روتوئر

شکل ۲-۱۸ - طیف فرکانسی سرعت موتور در حالتهای نرمال و خطای انحراف محوری استاتیک
شکل ۲-۱۹ - تغییرات ولتاز القابی کویل موتور با خطای انحراف محوری استاتیک روتوئر
شکل ۲-۲۰ - ساختار سیستم و روش جبرانسازی خطا
شکل ۲-۲۱ - بلوک دیاگرام روش جبرانسازی خطا
شکل ۲-۲۲ - بلوک دیاگرام سیستم
شکل ۲-۲۳ - نمای سیستم درایور دیسک نوری
شکل ۲-۲۴ - مدل موتور تحت مطالعه BLDC
شکل ۲-۲۵ - مدل موتور تحت مطالعه هنگام خطای انحراف محوری روتوئر
شکل ۲-۲۶ - شکل موج ولتاز القابی موتور هنگام خطای انحراف محوری استاتیک به میزان ۳۰/۲/۱
شکل ۲-۲۷ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۲۸ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۲۹ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۰ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۱ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۲ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۳ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۴ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۵ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۶ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۷ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۸ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۳۹ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۰ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۱ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۲ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۳ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۴ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۵ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۶ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۷ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۸ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۴۹ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۵۰ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۵۱ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۵۲ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۵۳ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شکل ۲-۵۴ - ۷-۱۶ ف) اندازه گیری فاز a، b، c، d) اندازه گیری فاز a، b، c
شكّل 3-10 - طيف فرکانسی ولتاج القابی موتور در حالت بدون خطا

شكل 3-11 - طيف فرکانسی ولتاج القابی موتور هنگام حطای انحراف محوری استاتیک

شكل 3-12 - طيف فرکانسی ولتاج القابی موتور هنگام حطای انحراف محوری استاتیک

شكل 4-1 - دبیارگر سیستم موتور آهربای دائم و درایو BLDC

شكل 4-2 - ولتاج القابی و جریان فازهای موتور به همراه مدهای کلیدزی با توجه به

سنسورهای موقعیت

شكل 4-3 - توان ولتاج القابی بروینت موتور چهار فاز

شكل 4-4 - شکل موج ولتاج القابی فاز ب فاز a و جریان فاز b

شكل 4-5 - بازکردن سیستم کنترلی متدال

شكل 4-6 - بلوک دبیارگر سیستم کنترلی (کنترل جریان)

شكل 4-7 - مدار معادل فازهای a و b در هنگام روش شدن، ب) مدار معادل فازهای a و c

شكل 4-8 - جریان فاز موتور هنگام خاموش شدن

شكل 4-9 - 100 باز کردن روش کنترل پیشنهادی (کنترل ولتاژ)

شكل 4-10 - اعمال روش کنترل متدال به موتور دارای خطای انحراف محوری 50/الف

جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شكل 4-11 - اعمال روش کنترل جریان پیشنهادی به موتور دارای خطای انحراف محوری 50/الف (گشتاور الکترومغناطیسی موتور

شكل 5-1 - موتور تحت آزمایش به همراه انکور خطي

شكل 5-2 - دبیارگر اینترنتی (ب) بورد DSP به همراه بورد واسط

شكل 5-3 - بلوک دبیارگر سیستم آزمایشگاهی

شكل 5-4 - ولتاج القابی فاز فاز موتور در حالت بدون خطا

شكل 5-5 - ولتاج القابی فاز فاز موتور هنگام حطای انحراف محوری به میزان 30/alf

شكل 5-6 - نتایج اعمال روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf (گشتاور الکترومغناطیسی موتور

شكل 5-7 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شكل 5-8 - دبیارگر سیستم دیجیتال

شكل 5-9 - خودکاری آزمایش به همراه روش کنترل

شكل 5-10 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf

شكل 5-11 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شكل 5-12 - دبیارگر سیستم دیجیتال

شكل 5-13 - خودکاری آزمایش به همراه روش کنترل

شكل 5-14 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf

شكل 5-15 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شكل 5-16 - دبیارگر سیستم دیجیتال

شكل 5-17 - خودکاری آزمایش به همراه روش کنترل

شكل 5-18 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf

شكل 6-1 - موتور تحت آزمایش به همراه اکسپلور خطي

شكل 6-2 - دبیارگر اینترنتی (ب) بورد DSP به همراه بورد واسط

شكل 6-3 - بلوک دبیارگر سیستم آزمایشگاهی

شكل 6-4 - ولتاج القابی فاز فاز موتور در حالت بدون خطا

شكل 6-5 - ولتاج القابی فاز فاز موتور هنگام حطای انحراف محوری به میزان 30/alf

شكل 6-6 - نتایج اعمال روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf (گشتاور الکترومغناطیسی موتور

شكل 6-7 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شكل 6-8 - دبیارگر سیستم دیجیتال

شكل 6-9 - خودکاری آزمایش به همراه روش کنترل

شكل 6-10 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf

شكل 6-11 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شکل 6-12 - دبیارگر سیستم دیجیتال

شکل 6-13 - خودکاری آزمایش به همراه روش کنترل

شکل 6-14 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf

شکل 6-15 - جریان فاز استاتوری، b) گشتاور الکترومغناطیسی موتور

شکل 6-16 - دبیارگر سیستم دیجیتال

شکل 6-17 - خودکاری آزمایش به همراه روش کنترل

شکل 6-18 - روش کنترل متدال به موتور دارای خطای انحراف محوری 30/alf
شكل 5-7: أعمال جريان فركانس بالا جهت تخمين اندوكنانس موتور، الف) جريان فاز، ب)

ولتز فاز به فاز منتجه

شكل 5-8: شار بيوندي و ولتز القياسي فاز به فاز تخميني

شكل 5-9: نتائج اعمال روش كنترل پیشنهادی به موتور دارای خطا انحراف محوری

30/0%، الف) جریان فاز استاندارد، ب) گشتاور الکتروومگناطیسی موتور

شکل 5-10: نتائج اعمال روش کنترل متدلای به موتور دارای خطا انحراف محوری 50/0%.

الف) جریان فاز استاندارد، ب) گشتاور الکتروومگناطیسی موتور

شکل 5-11: نتائج اعمال روش کنترل پیشنهادی به موتور دارای خطا انحراف محوری 20/0%، الف) اعمال روشن کنترل

متدلای، ب) اعمال روشن کنترل پیشنهادی

شکل 5-12: نتائج اعمال روشن کنترل ولتز پیشنهادی به موتور دارای خطا انحراف محوری 50/0%، الف) گشتاور الکتروومگناطیسی موتور

شکل 5-13: سرعت موتور هنگام خطا انحراف محوری 50/0، الف) اعمال روشن کنترل

متدلای، ب) اعمال روشن کنترل پیشنهادی

شکل 5-14: دیاگرام، الف) کنترل کننده BI، ب) سیستم حلقه بار، پ) سیستم حلقه بار

شکل 5-15: نتایج اعمال روشن کنترل ولتز پیشنهادی به موتور دارای خطا انحراف محوری 20/0%، الف) گشتاور الکتروومگناطیسی موتور

شکل 5-16: سرعت موتور هنگام خطا انحراف محوری 20/0، الف) اعمال روشن کنترل

متدلای، ب) اعمال روشن کنترل پیشنهادی

شکل 5-17: نتایج اعمال روشن کنترل ولتز پیشنهادی به موتور دارای خطا انحراف محوری 50/0%، الف) گشتاور الکتروومگناطیسی موتور

شکل 5-18: سرعت موتور هنگام خطا انحراف محوری 50/0، الف) اعمال روشن کنترل

متدلای، ب) اعمال روشن کنترل پیشنهادی

شکل 5-19: شکل موج ولتز القياسي و مقدار تخمینی، الف) 20/0% تغییر در مقاومت بیچ فاز، ب) تغییر در اندوکانس فاز

شکل 5-20: پاسخ دیئامیک سیستم به تغییر در گشتاور بار، الف) با اعمال روشن کنترل

جریان پیشنهادی، ب) با اعمال روشن کنترل ولتز پیشنهادی

شکل 5-21: طیف فرکانسی ولتز القياسي در حالتهای خطا انحراف محوری استاتیک و حالت بدون خطا

ط
شکل ۵-۲۲- طیف فرکانسی جریان موتور در حالت‌های خطای انحراف محوری استاتیک و حالت بدون خطا... ۹۱
شکل ۵-۲۳- طیف فرکانسی گشتاور الکترومگناطیسی موتور در حالت‌های خطای انحراف محوری استاتیک و حالت بدون خطا... ۹۲

<table>
<thead>
<tr>
<th>Arabic Term</th>
<th>English Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>طيف هارمونيكي</td>
<td>Harmonic Spectrum</td>
</tr>
<tr>
<td>كليديتي</td>
<td>Switching</td>
</tr>
<tr>
<td>كنتزل جزيئ</td>
<td>Current Control</td>
</tr>
<tr>
<td>كنتزل ولنزا</td>
<td>Voltage Control</td>
</tr>
<tr>
<td>كنتزل هيستريسي</td>
<td>Hysteresis Control</td>
</tr>
<tr>
<td>گشتاور</td>
<td>Electromagnetic Torque</td>
</tr>
<tr>
<td>الكترومغناطيسي</td>
<td>Converter</td>
</tr>
<tr>
<td>مدلواسپیون بهنای پالس</td>
<td>Pulse width modulation</td>
</tr>
<tr>
<td>مقدار مرجع</td>
<td>Reference Value</td>
</tr>
<tr>
<td>موتور آهنتبایی دام</td>
<td>Brushless DC Motor</td>
</tr>
<tr>
<td>بدون جاروبک</td>
<td>Permanent Magnet Synchronous Motor</td>
</tr>
<tr>
<td>موتور سنکرون</td>
<td>Torque Ripple</td>
</tr>
<tr>
<td>مغناطيس دائم</td>
<td>Current Rise Time</td>
</tr>
<tr>
<td>ناحیه پیک</td>
<td>Current Fall Time</td>
</tr>
<tr>
<td>ولتژ الکتری ضد محرکه</td>
<td>Leg</td>
</tr>
<tr>
<td>یکسو کنده</td>
<td>Back-EMF</td>
</tr>
<tr>
<td>موتور سنکرون</td>
<td>Permanent Magnet Synchronous Motor</td>
</tr>
<tr>
<td>موتور آهنتبایی دام</td>
<td>Brushless DC Motor</td>
</tr>
<tr>
<td>بدون جاروبک</td>
<td>Permanent Magnet Synchronous Motor</td>
</tr>
<tr>
<td>موتور سنکرون</td>
<td>Torque Ripple</td>
</tr>
<tr>
<td>مغناطيس دائم</td>
<td>Current Rise Time</td>
</tr>
<tr>
<td>ناحیه پیک</td>
<td>Current Fall Time</td>
</tr>
<tr>
<td>ولتژ الکتری ضد محرکه</td>
<td>Leg</td>
</tr>
<tr>
<td>یکسو کنده</td>
<td>Back-EMF</td>
</tr>
<tr>
<td>متر ارگداش پایدار مداری</td>
<td>Flux Linkage</td>
</tr>
<tr>
<td>طول فاصله هواپی</td>
<td>Airgap Length</td>
</tr>
</tbody>
</table>

انحراف محوری
انحراف محوری
انحراف محوری
دینامیک
اینورتر
پاره‌دهی
تخمین اندوکتانس
تخمین پارامتر
خطای روتور
دیود هزرگرد
ریبل گشتاور
زمان خیز جزیران
زمان فرود جزیران
ساق
سرعت مکتیکی
شار پیوندی
طول فاصله هوایی
<table>
<thead>
<tr>
<th>English</th>
<th>Persian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airgap Length</td>
<td>طول فاصله هوایی</td>
</tr>
<tr>
<td>Back-EMF</td>
<td>ولتاژ القابی ضد محركه</td>
</tr>
<tr>
<td>BrushLess DC Motor</td>
<td>موتور اهربایی دائم بدون جاروبراسی</td>
</tr>
<tr>
<td>Converter</td>
<td>مبدل</td>
</tr>
<tr>
<td>Current Control</td>
<td>کنترل جریان</td>
</tr>
<tr>
<td>Current Fall Time</td>
<td>زمان فرو رفتن جریان</td>
</tr>
<tr>
<td>Current Rise Time</td>
<td>زمان خیز جریان</td>
</tr>
<tr>
<td>Dynamic Eccentricity</td>
<td>انحراف محوری دینامیک</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>انحراف محوری الکترومغناطیسی</td>
</tr>
<tr>
<td>Efficiency</td>
<td>بازدهی</td>
</tr>
<tr>
<td>Electromagnetic Torque</td>
<td>گشتاور الکترومغناطیسی</td>
</tr>
<tr>
<td>Flux Linkage</td>
<td>شار پیوندی</td>
</tr>
<tr>
<td>Freewilling Diode</td>
<td>دیود هرغردد</td>
</tr>
<tr>
<td>Harmonic Spectrum</td>
<td>طرف هارمونیک</td>
</tr>
<tr>
<td>Hysteresis Control</td>
<td>کنترل هیسترزیس</td>
</tr>
<tr>
<td>Inductance Control</td>
<td>تخمین انドوکنتاکس</td>
</tr>
<tr>
<td>Inverter</td>
<td>اینورتر</td>
</tr>
<tr>
<td>Leg</td>
<td>ساق</td>
</tr>
<tr>
<td>Mechanical Speed</td>
<td>سرعت مکانیک</td>
</tr>
<tr>
<td>Parameter Estimation</td>
<td>تخمین پارامتر</td>
</tr>
<tr>
<td>Peak Portion</td>
<td>ناحیه پیک</td>
</tr>
<tr>
<td>Permanent Magnet Synchronous Motor</td>
<td>موتور سینکرون مغناطیس دائم</td>
</tr>
<tr>
<td>Pulse width modulation</td>
<td>مدولاسیون پهنای پالس</td>
</tr>
<tr>
<td>Rectifier</td>
<td>یکسکو کننده</td>
</tr>
<tr>
<td>Reference Value</td>
<td>مقدار مرجع</td>
</tr>
<tr>
<td>Rotor Fault</td>
<td>خطای روتور</td>
</tr>
<tr>
<td>Static Eccentricity</td>
<td>انحراف محوری استاتیک</td>
</tr>
<tr>
<td>Switching</td>
<td>کلیدزنی</td>
</tr>
<tr>
<td>Torque Ripple</td>
<td>ریبل گشتاور</td>
</tr>
<tr>
<td>Voltage Control</td>
<td>کنترل ولتاژ</td>
</tr>
</tbody>
</table>

واژه نامه انگلیسی به فارسی
Abstract

Rotor eccentricity is one of the common failures that can happen to a motor. In recent years, considerable amount of researches for rotor eccentricity fault diagnosis have been presented. However, not too much attention is given to the case of “eccentricity fault tolerant control”. The necessity of “eccentricity fault tolerant control” is the importance of motor continuous operation during fault in sensitive industries with the best possible performance. Applying conventional control methods during eccentricity fault is not efficient. Since, these methods do not consider eccentricity fault effects such as distortion in flux linkage distribution and motor back-EMF waveform, as well as phase inductances changes which may lead to undesirable torque ripples. Hence, a new control strategy for improving motor performance is advantageous. In this thesis two control strategies for BLDC motor in presence of static rotor eccentricity are proposed. The first method is the proposed current control strategy. On-line estimation of phase inductances and phase to phase back-EMF during eccentricity is the basis of this method. Phase to phase inductances are measured by applying a high frequency, low amplitude sinusoidal current to motor current. Current and resulted voltage phasors are used for estimation. Phase to phase back-EMF is estimated by motor electrical equations. So, unlike conventional methods, stator currents are injected considering estimated back-EMFs of conducting phases. The second strategy is based on motor terminal voltage control. For estimation of phase to phase inductances, exponential nature of phase current during its fall time interval is used. Phase to phase flux linkage estimation is done by means of motor electrical equations. In this proposed strategy, the controller adjusts motor terminal voltages considering changes in motor specifications due to eccentricity. Experimental results verify performance of the proposed methods in reducing electromagnetic torque pulsations and motor speed variations during fault.

Key Words: Back-EMF estimation, Flux linkage estimation, Phase inductance estimation, Rotor eccentricity, Torque pulsation reduction.
Fault Tolerant Control of Brushless DC Motor in Presence of Rotor Static Eccentricity

Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Ph.D.) in Electrical Engineering, Power Electronics

School of Electrical and Computer Engineering
Tarbiat Modares University

By:
Seyed Mohammad Shakouhi

Supervisor:
Dr. Mustafa Mohamadian

Advisor:
Dr. Seyed Ebrahim Afjei

Winter 2014