آین نامه چاب پایان‌نامه‌های دانشجویان دانشگاه تربیت مدرس

نظر به اینکه چاب و انتشار پایان‌نامه‌های تحصیلی دانشجویان دانشگاه تربیت مدرس، می‌بخشی از فعالیت‌های علمی پژوهشی دانشگاه است. بنابراین به منظور آگاهی و رعایت حقوق دانشگاه، دانش آموختگان این دانشگاه نسبت به رعایت موارد ذیل متعهد می‌شوند:

ماده ۱: در صورت اقدام به چاب پایان‌نامه خود، مربی یا قابل به طور کنی به "دفتر نشر آثار علمی" دانشگاه اطلاع دهد.

ماده ۲: در صفحه سوم کتاب (پس از دریافت شناسنامه) عبارت ذیل را چاب کنند:

"کتاب حاضر، حاصل پایان‌نامه کارشناسی ارشد تغییرات رضا کیارسی در رشته مهندسی مواد-خوردگی و حفاظت مواد است که در سال ۱۳۸۸ در دانشکده فنی و مهندسی دانشگاه تربیت مدرس به راهنمايی جناب آقای دکتر تقی شهریاری، مشاوره جناب آقای دکتر جابیر نشاطی از آن دفاع شده است."

ماده ۳: به منظور جبران خسارتی از هزینه‌های انتشارات دانشگاه، تعهد یک درصد شمارگان کتاب (در هر نوبت چاب) را به "دفتر نشر آثار علمی" دانشگاه اهدا کند. دانشگاه می‌تواند مازاد نیاز خود را به نفع مرکز نشر در معرض فروش قرار دهد.

ماده ۴: در صورت عدم رعایت ماده ۳، ۵۰٪ بهای شمارگان چاب شده رابط عنوان خسارت به دانشگاه تربیت مدرس، تأیید کنن.

ماده ۵: دانشجو تعهد و قبول می‌کند در صورت خودداری از پرداخت بهای خسارت، دانشگاه می‌تواند خسارت مذکور را از طریق مراجع قضایی مطالبه و وصول کند؛ به علاوه به دانشگاه حق می‌دهد به منظور استیفای حقوق خود، از طریق دادگاه، معادل وجو مذکور در ماده ۴ را از محل توقیف کتابخانه عرضه شده نگارهداری برای فروش، تامین نماید.

ماده ۶: اینجنب رضا کیارسی دانشجوی رشته مهندسی مواد-خوردگی و حفاظت مواد مقطع کارشناسی ارشد تعهد فوق وضمنت اجرایی آن را قبل کرده، به آن ملتزم می‌شوم.

نام و نام خانوادگی: رضا کیارسی
تاریخ و امضا: ۱۳۸۷/۲/۱۶
دستورالعمل حق مالکیت مادی و معنی در مورد نتایج پژوهش‌های علمی دانشگاه تربیت مدرس

مقدمه: با عناية به سیاست‌های پژوهشی دانشگاه در راستای تحقق عدالت و کرامت انسان‌ها که لازم است تحقیقات علمی، دانشجویان، دانش‌آموختگان و دیگر همکاران طرح، در مورد نتایج پژوهش‌های علمی که تحت شرایط پایان‌نامه، رساله و طرح‌های تحقیقاتی که به‌هم‌راهی دانشگاه انجام شده است، مورد ذیل را رعایت نمایند:

ماده ۱: حقوق مادی و معنی پایان نامه‌ها/رساله‌های مصوب دانشگاه متعلق به دانشگاه است و هرگونه بهره‌برداری از آن باید با ذکر نام دانشگاه و رعایت آمیزی‌های مصوب دانشگاه باشد.

ماده ۲: انتشار مقاله‌ی یا مقالات مستخرج از پایان‌نامه و رساله به صورت چاپ در نشریات علمی و یا ارائه در مجامع علمی باید با ذکر نام دانشگاه بوده و استاد راهنمای مسئول مطالب مقاله باشد.

توضیح: در مقالاتی که پس از دانش‌آموختگی بصورت ترکیبی از اطلاعات جدید و نتایج حاصل از پایان‌نامه و رساله نیز منتشر می‌شود نیز باید نام دانشگاه در جز شود.

ماده ۳: انتشار کتاب حاصل از نتایج پایان‌نامه و رساله و تمامی طرح‌های تحقیقاتی دانشگاه باید با مجوز کتبی صادره از طریق حوزه پژوهشی دانشگاه و بر اساس آن، نام‌های مصوب انجام می‌شود.

ماده ۴: ثبت اختراع و تدوین دانش فنی و یا ارائه در جشنواره‌های ملی، منطقه‌ای و به‌عنوان که حاصل نتایج مستخرج از پایان‌نامه و رساله و تمامی طرح‌های تحقیقاتی دانشگاه باید با هم‌هم‌راهی استاد راهنمای با مجوز طرح از طریق حوزه پژوهشی دانشگاه انجام گردد.

ماده ۵: این دستورالعمل در ۵ ماده و یک تبصره در تاریخ ۱۳۸۴/۴/۵ در شهری پژوهشی دانشگاه به تصویب رسیده و از تاریخ تصویب لازم الاجرا است و هرگونه تخلف از مفاد این دستورالعمل، از طریق مراجع قانونی قابل پیگیری می‌شود.

نام و نام خانوادگی: رضا کیارسی
تاریخ و امضای: ۱۳۸۷/۲/۱۶
پارسی رفتار خوردگی فولاد کم آلیاژی در محیط‌های حاوی دی اکسید کربن و در حضور استاتیک

پایان‌نامه برای دریافت جریان کارشناسی ارشد در رشته مهندسی مواد گراش خوردگی و حفاظت مواد

پاس کیارسی

استاد راهنمای:

دکتر نیلی شهرابی فراهانی

اردیبهشت ماه 1388
دانشکده فنی مهندسی

بررسی رفتار خوردگی فولاد کم آلیاژی در محیط‌های حاوی دی اکسید کربن و در حضور اسیداستیک

پایان‌نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی مواد گرایش خوردگی و حفاظت مواد

رضما گیارسی

استاد راهنمای:

دکتر نیکی شهروانی فراهانی

استاد مشاور:

دکتر جابر نشاطی

ارديبهشت ماه 1388
تقدیم به پدر و مادر عزیزم!

به پاس تعبیر عظیم و انسانی شان از کلمه ایثار و از خودگذشتگی؟

به پاس عاطفه سرشار و گرمای امیدبخش وجودشان که در سردرترین روزگاران بهترین
پشتبان است

به پاس قلب های بزرگشان که فریادرس است و سرگردانی و ترس در پناهشان به شجاعت
می گراید

و به پاس محبت های بپردهشان که هر گذ فروکش نمی کند.
تشکر و قدردانی:

وظیفه خود می‌دانم سپاسگزار تمام آنهايی باشم که در این دوره ارزشمند، بودنشان و امیدشن راهگشایی مسیر بود. استادی عزیر و گرانقدر بخش مهندسی مواد، بخصوص جناب آقای دکتر شهروپی فراهانی که همواره، همراه و پشتیبان بنده نه تنها در طول مدت انجام این پایان نامه، بلکه در تمام دوره تحصیلیم بودهاند و همچنین از جناب آقای دکتر نشاطی که سمت مشاوره پروژه اینجانب بر عهده ایشان بود، کمال تشکر را دارم و از راهنمایی‌هایی به موقع و سودمند ایشان استفاده‌های زیادی کردم و به هنگام نیاز برای حل مشکلات اینجانب از هیچ کمکی دریغ نوروزی‌بندی. برای ایشان آرزوری سلامتی، موافقیت و سر بلندی را دارم.

همچنین لازم می‌دانم از دوستان خود در آزمایشگاه‌های گروه خوردرگی و حفاظت مواد بخصوص آقایان محمود علی‌اصفهانی، صادق میرزا مهدی، فرزاد کارگر، احسان صادق‌نوری، سید احمد لاجوردو، بهزاد محمودی، حسین حسنزاد، محمد خوشحال، صالح نوروزی و همچنین سرکار خانم آنمه قاسمی صمیمانه سپاسگزاری نمایم.

همچنین از سایر دوستان و آشنایان که به هر نحوی به من کمک کرده‌اند و من از ایشان در اینجا نامی نبوده‌ام. عذرخواهی می‌کنم و کمال تشکر را از همه آن بزرگواران دارم.
چکیده

در اکسیدکردن یکی از عمده‌ترین عوامل خوردگی در صنایع نقش و گاز اسست و تری‌تیک به یک سوم خسارتهای مالی و جانی در کنار آلودگی‌های زیست محیطی را به خوردگی ناشی از دی اکسیدکردن نسبت می‌دهند. نتایج بررسی این فرم است که تحقیقات بر جنبه‌های مختلف این نوع از خوردگی متمرکز شده‌است. اما در این میان اسیداستیک کمتر مورد توجه قرار گرفته‌است. در این تحقیق سعی شده است تا به بررسی اثرات اسیداستیک بر رفتار خوردگی فولاد کم آلیاژی پرداخته شود. با استفاده از سل شیشه‌ای استاندارد به بررسی pH و غلظت‌های مختلف اسیداستیک پرداخته و از محاسبات ترمودینامیکی و آزمون‌های الکتروشیمیایی از جمله پلاریزاسیون خطی، تافلی و همچنین روش امیدانس الکتروشیمیایی استفاده شد. نتایج حاصل از محاسبات ترمودینامیکی نشان داد که نیروی تنش و اکنش‌های کاتالیز، انجام پذیر هستند آنچنان در رابطه با واکنش‌های آن‌را نیز واکنش تکسی نهایی محتمل است.

Fe(OH)3 مورد حاضر که در نمونه‌ها حاصل از آزمون پلاریزاسیون تاغی در محیط‌های حاوی اسیداستیک نرخ واکنش کاتالیز تسریع می‌شود و به‌طور کامل انتقال جرم است.

Fe(OH)3 در حضور اسیداستیک با روت سطح مربوط می‌شود و تشکیل لاپ‌های سطحی و بخصوص در حضور اسیداستیک با مشکل مواجه خواهد شد. در تمامی غلظتها و همچنین دماها 25 و 60 درجه سانتی‌گراد احیای اسیداستیک رخ می‌یابد و این واکنش کنترل کننده جریان کاتالیز در رفتار خوردگی است. بعلاوه آنکه اولین لاپه که در محیط تکسی نهایی محتمل است Fe(OH)3 می‌شود لایه‌ای است.

واژه‌های کلیدی: خوردگی ناشی از دی اکسیدکردن، اسیداستیک، فولاد کم آلیاژی، روش پلاریزاسیون تاغی، روش امیدانس الکتروشیمیایی.
فهرست مطالب

فصل 1: مقدمه

فصل 2: مقدمه بر ساخت

فصل 3: روش تحقیق

فصل 4: مواد مورد استفاده در آزمایش

فصل 5: نتایج و گزارش

فصل 6: نتایج و گزارش در مورد آزمایش

فصل 7: نتایج و گزارش در مورد آزمایش

فصل 8: نتایج و گزارش در مورد آزمایش

فصل 9: نتایج و گزارش در مورد آزمایش
فصل 4: نتایج و تفسیر آنها

1- مقدمه

2- ۱۹۴۳ نتایج حاصل از آزمون‌های انجم شده در $pH = 3$ و مدت زمان دو ساعت

3- بررسی اثر اسیداسیستیک بر رفتار الکتروشیمیایی فولاد کم آلیاژی در محلول هوازدایی شده توسط نیتروژن (غلفظهای صفر و ۱۰۰۰ ppm اسیداسیستیک، مدت انجم آزمایش ۲۴ ساعت، دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ rpm ($pH = 4$) در محلول اشباع از دی اکسیدکربن در مقیاس با محلول

4- بررسی اثر دی اکسیدکربن بر رفتار الکتروشیمیایی فولاد کم آلیاژی در محلول اشباع از دی اکسیدکربن در هوازدایی شده توسط نیتروژن (مدت انجم آزمایش ۲۴ ساعت، دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ ppm ($pH = 4$) بررسی اثر اسیداسیستیک بر رفتار الکتروشیمیایی فولاد کم آلیاژی در محلول اشباع از دی اکسیدکربن در دمای ۶۰ درجه سانتی‌گراد - ۷۰ ppm اسیداسیستیک ($pH = 4$) و سرعت چرخش ۲۰۰۰ rpm (غلفظهای صفر و ۱۰۰۰ ppm اسیداسیستیک) - ۷۵ سانتی‌گراد و شرایط ساکن (غلفظهای صفر تا ۱۰۰۰ ppm اسیداسیستیک).

8- ۶-۴ بررسی اثر غلفظت اسیداسیستیک بر رفتار الکتروشیمیایی فولاد کم آلیاژی در محلول اشباع از دی اکسیدکربن در دمای ۲۰ درجه سانتی‌گراد و شرایط ساکن (غلفظهای صفر تا ۱۰۰۰ ppm اسیداسیستیک).

88

فصل 5: جمع‌بندی و پیشنهادها

89- ۱- ۵ نتیجه گیری

90- ۵- ۵ پیشنهادها

91

مراجع
فهرست اشکال

1- انتقال جرم پروتون و اسیدکرینکی از میان لایه مرزی به عنوان مرحله کننده سرعت خوردگی

2- اثر فشار جریان دی اسیدکرین بر نرخ خوردگی

3- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

4- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

5- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

6- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

7- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

8- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

9- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

10- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

11- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

12- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

13- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

14- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

15- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

16- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

17- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

18- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

19- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

20- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

21- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

22- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

23- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

24- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

25- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

26- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

27- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

28- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

29- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

30- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

31- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

32- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

33- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

34- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

35- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

36- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

37- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

38- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

39- دمای محتوای پلازما (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

40- دمای محتوای امیدان (N80) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

41- دمای محتوای پلازما (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک

42- دمای محتوای امیدان (X65) در محدوده (2-6) درصد و زنی در محدوده اسیداستیک
شکل (4-5) نمودار پلازماپسون ناگفته در محلول نیترئزن (غلاف‌های صفر و ۱۰۰ ppm اسیداستیک، زمان ۲۴ ساعت، pH = ۴، ۶۰ و ۱۰۰۰۰ rpm)

شکل (4-6) نمودارهای ناپذیرایی محیط از اندازه‌گیری امیدانس در محلول نیترئزن خالص (مدت انجام آزمایش ۲۴ ساعت، pH = 5 و ۲۰۰۰ rpm)

شکل (4-7) نمودارهای بد زاویه‌ای از اندازه‌گیری امیدانس در محلول نیترئزن خالص مدت انجام آزمایش ۴ ساعت، دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ rpm

شکل (4-8) نمودار ناپذیرایی محیط از اندازه‌گیری امیدانس در محلول نیترئزن حاوی ۱۰۰ ppm اسیداستیک، ساعت صفر

آزمایش دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ rpm

شکل (4-9) نمودارهای ناپذیرایی محیط از اندازه‌گیری امیدانس در محلول نیترئزن حاوی ۱۰۰ ppm اسیداستیک، ساعتهای ششم تا چهاردهم آزمایش، دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ rpm و ۴

شکل (4-10) نمودارهای ناپذیرایی محیط از اندازه‌گیری امیدانس در محلول نیترئزن خالص و حاوی ۱۰۰ ppm اسیداستیک با گذشت زمان

شکل (4-11) روند تغییرات مقاومت پلازماپسون در محلول نیترئزن خالص و حاوی ۱۰۰ ppm اسیداستیک با گذشت زمان

شکل (4-12) روند تغییرات ضخامت لایه دوگانه الکتریکی در محلول نیترئزن خالص و حاوی ۱۰۰ ppm اسیداستیک با گذشت زمان

شکل (4-13) نتایج حاصل از آزمون پلازماپسون خطبی فولاد X70 در محلول‌های هوازدایی شده توسط نیترئزن و دی- اکسیدکرین (مدت انجام آزمایش ۲۴ ساعت، دما ۶۰ درجه سانتی‌گراد، سرعت چرخش ۲۰۰۰ rpm)

شکل (4-14) نمودار پلازماپسون ناگفته در محیط‌های هوازدایی شده نیترئزن و اشباع از دی- اکسیدکرین (مدت زمان ۲۴ ساعت، pH = ۴ و ۶۰ و ۱۰۰ C)

شکل (4-15) نرخ خوردنگ فولاد کم‌آیا در محلول اشباع از دی- اکسیدکرین در دمای ۷۰ درجه سانتی‌گراد و سرعت چرخش ۱۰۰۰۰ rpm (غلاف‌های صفر و ۱۰۰ ppm اسیداستیک)

شکل (4-16) نمودارهای حاصل از پلازماپسون ناگفته در محلول اشباع از دی- اکسیدکرین در دمای ۷۰ درجه سانتی‌گراد و سرعت چرخش ۱۰۰۰۰ rpm (غلاف‌های صفر و ۱۰۰ ppm اسیداستیک)

شکل (4-17) نمودارهای حاصل از پلازماپسون ناگفته در محلول اشباع از دی- اکسیدکرین در دمای ۷۰ درجه سانتی‌گراد و سرعت چرخش ۱۰۰۰۰ rpm (غلاف‌های صفر و ۱۰۰ ppm اسیداستیک)

شکل (4-18) نمودارهای حاصل از اندازه‌گیری امیدانس در محلول دی- اکسیدکرین در دمای ۷۰ درجه سانتی‌گراد و سرعت چرخش ۱۰۰۰۰ rpm

شکل (4-19) نمودارهای حاصل از اندازه‌گیری امیدانس در محلول دی- اکسیدکرین در دمای ۷۰ درجه سانتی‌گراد و سرعت چرخش ۱۰۰۰۰ rpm
شکل (4-3) ماده استفاده شده جهت شیب‌سازی فرایند در محلول دی‌اکسیدکربن در دمای 60 درجه سانتی‌گراد و
سرعت چرخش 1000 rpm ماده استفاده شده جهت شیب‌سازی فرایند در محلول دی‌اکسیدکربن در دمای 60 درجه سانتی‌گراد و
سرعت چرخش 1000 rpm

شکل (4-4) نمودرهای پلاریزاسیون تافی فولاد کم آلیزی در محیط دی‌اکسیدکربن خالص و همجنس غلظت‌های صفر تا 800 ppm اسیدسایک در دمای 20 درجه سانتی‌گراد و شرایط ساکن

شکل (4-5) منحنی‌های نایکوئیست حاصل از اندازه‌گیری امیدانس در محلول دی‌اکسیدکربن خالص و همجنس غلظت‌های مختلف اسیدسایک در دمای 20 درجه سانتی‌گراد و شرایط ساکن

شکل (4-6) منحنی‌های بد فاز حاصل از اندازه‌گیری امیدانس در محلول دی‌اکسیدکربن خالص و همجنس غلظت‌های مختلف اسیدسایک در دمای 20 درجه سانتی‌گراد و شرایط ساکن

شکل (4-7) تغییرات ضخامت لایه دوگانه با افزایش مدت زمان آزمایش در محلول دی‌اکسیدکربن خالص و غلظت‌های مختلف اسیدسایک در دمای 20 درجه سانتی‌گراد و شرایط ساکن

شکل (4-8) روند تغییرات مقاومت پلاریزاسیون با افزایش مدت زمان آزمایش در محلول دی‌اکسیدکربن خالص و غلظت‌های مختلف اسیدسایک در دمای 20 درجه سانتی‌گراد و شرایط ساکن....
جدول (21-25) پارامترهای الکتروشیمیایی حاصل از نمودار بلاریزاسیون تافلی در محلول اشباع از دی اکسیدکریز (غلظت‌های صفر و 500 ppm)...

جدول (21-22) نتایج حاصل از شیب سازی در محلول دی اکسیدکریز در دمای 60 درجه سانتی‌گراد و سرعت چرخش 1000 rpm...

جدول (21-23) نتایج حاصل از شیب سازی در محلول 500 ppm دی اکسیدکریز در دمای 60 درجه سانتی‌گراد و سرعت چرخش 80 rpm...

جدول (21-24) پونهای موجود در محلول به همراه ضریب نفوذ آنها...

جدول (21-25) پارامترهای الکتروشیمیایی حاصل از نمودارهای بلاریزاسیون تافلی فولاد کم آلیاژی در محیط دی اکسیدکریز خالص و همچنین غلظت‌های صفر تا 500 ppm...

20 درجه سانتی‌گراد و شرایط ساکن...
مراجعة
References:

17. S. Wang, K. George and S. Nesic, “High Pressure CO2 Corrosion Electrochemistry and the Effect of Acetic Acid”, CORROSION44, NACE International, Houston, TX, paper no. 372.

18. E. W. J. van Hunnik, B. F. M. Pots and E. L. J. A. Hendriksen, “The formation of protective FeCO\textsubscript{3} corrosion product layers in CO\textsubscript{2} corrosion,” CORROSION44, NACE International, Houston, TX, 1998, paper no. 7.

19. G Schmitt, M Hörstemeyer “FUNDAMENTAL ASPECTS OF CO\textsubscript{2} METAL LOSS CORROSION – PART II: INFLUENCE OF DIFFERENT PARAMETERS ON CO\textsubscript{2} CORROSION MECHANISMS”CORROSION44 paper no. 7112.

21. A. Dugstad, “The Importance of FeCO\textsubscript{3} supersaturation on the CO\textsubscript{2} corrosion of carbon steels”, CORROSION44, NACE International, Houston, TX, 1997, paper no. 14.

27. M. Ueda and H. Takabe, „Effect of Environmental Factor and Microstructure on Morphology of Corrosion Products in CO\textsubscript{2} Environments”, CORROSION44, NACE International, Houston, TX, 1999, paper no. 117.

J L. Crolet, N. Thevenot and A Dugstad, “Role of Free Acetic Acid on the CO₃ Corrosion of Steels”, CORROSION’49, NACE International, Houston, TX, 1949, paper no. 4.

Srdjan Nešić “Key issues related to modelling of internal corrosion of oil and gas pipelines – A review” Corrosion Science 44(2001) 1333-1348

[29] Dong Liu, ZhenYu Chen and XingPeng Guo "Effect of acetic acid and acetate on CO₂ corrosion of carbon steel" Anti-Corrosion Methods and Materials, Volume 56 · Number 3 · 2008 · 17–17

Abstract:

CO_2 Corrosion is one of the most important types of corrosion in oil and gas industry and one third of economic loss, accident and environmental pollutions is related to it. During the last years many researchers focused their studies on various factors of CO_2 corrosion but effect of Acetic acid is not considered from electrochemical point Of view. In this research the effect of Acetic acid on corrosion behavior of a low alloy steel has been studied. By use of electrochemical techniques such as LPR (linear polarization), PDS (potentiodynamic sweep) and EIS (Electrochemical Impedance Spectroscopy) in standard glass cell effect of temperature, pH and Acetic acid has been researched. Thermodynamics calculation showed that all of cathodic reactions have contribution in total cathodic current but among anodic reactions only formation of Iron hydroxide is proceeds. Cathodic branch of polarization curve in potentiodynamic sweep is under mass transfer control but anodic branch is under charge transfer control and in inhibited in presence of acetic acid,. EIS technique showed that increase of corrosion rate in presence of acetic acid related to reduction of this acid and formation of surface layer such as $Fe(OH)_2$ is interrupted.

Keywords: CO_2 Corrosion, acetic acid, low alloy steel, polarization technique, EIS
Assessment of Corrosion behavior of low alloy steel in CO$_2$ containing solutions in presence of Acetic acid

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Materials Science & Engineering

By:
Reza Kiarasi

Supervisor:
Dr T. Shahrabi Farahani

Advisor
Dr J. Neshati

May 2009